Patents Assigned to Qiagen Genomics, Inc.
  • Publication number: 20060057566
    Abstract: Tags and linkers specifically designed for a wide variety of nucleic acid reactions are disclosed, which are suitable for a wide variety of nucleic acid reactions wherein separation of nucleic acid molecules based upon size is required.
    Type: Application
    Filed: June 19, 2003
    Publication date: March 16, 2006
    Applicant: QIAGEN Genomics, Inc.
    Inventors: Jeffrey Van Ness, John Tabone, J. Howbert, John Mulligan
  • Patent number: 6815212
    Abstract: Methods are provided for detecting the binding of a first member to a second member of a ligand pair, comprising the steps of (a) combining a set of first tagged members with a biological sample which may contain one or more second members, under conditions, and for a time sufficient to permit binding of a first member to a second member, wherein said tag is correlative with a particular first member and detectable by non-fluorescent spectrometry, or potentiometry, (b) separating bound first and second members from unbound members, (c) cleaving the tag from the tagged first member, and (d) detecting the tag by non-fluorescent spectrometry, or potentiometry, and therefrom detecting the binding of the first member to the second member.
    Type: Grant
    Filed: October 24, 2001
    Date of Patent: November 9, 2004
    Assignee: Qiagen Genomics, Inc.
    Inventors: Jeffrey Van Ness, John C. Tabone, J. Jeffry Howbert, John T. Mulligan
  • Publication number: 20040115694
    Abstract: Methods and compounds, including compositions therefrom, are provided for determining the sequence of nucleic acid molecules. The methods permit the determination of multiple nucleic acid sequences simultaneously. The compounds are used as tags to generate tagged nucleic acid fragments which are complementary to a selected target nucleic acid molecule. Each tag is correlative with a particular nucleotide and, in a preferred embodiment, is detectable by mass spectrometry. Following separation of the tagged fragments by sequential length, the tags are cleaved from the tagged fragments. In a preferred embodiment, the tags are detected by mass spectrometry and the sequence of the nucleic acid molecule is determined therefrom. The individual steps of the methods can be used in automated format, e.g., by the incorporation into systems.
    Type: Application
    Filed: July 16, 2003
    Publication date: June 17, 2004
    Applicant: QIAGEN Genomics, Inc.
    Inventors: Jeffrey Van Ness, John C. Tabone, J. Jeffry Howbert, John T. Mulligan
  • Patent number: 6623928
    Abstract: Methods and compounds, including compositions therefrom, are provided for determining the sequence of nucleic acid molecules. The methods permit the determination of multiple nucleic acid sequences simultaneously. The compounds are used as tags to generate tagged nucleic acid fragments which are complementary to a selected target nucleic acid molecule. Each tag is correlative with a particular nucleotide and, in a preferred embodiment, is detectable by mass spectrometry. Following separation of the tagged fragments by sequential length, the tags are cleaved from the tagged fragments. In a preferred embodiment, the tags are detected by mass spectrometry and the sequence of the nucleic acid molecule is determined therefrom. The individual steps of the methods can be used in automated format, e.g., by the incorporation into systems.
    Type: Grant
    Filed: May 14, 2001
    Date of Patent: September 23, 2003
    Assignee: QIAGEN Genomics, Inc.
    Inventors: Jeffrey Van Ness, John C. Tabone, J. Jeffry Howbert, John T. Mulligan
  • Patent number: 6613508
    Abstract: Tags and linkers specifically designed for a wide variety of nucleic acid reactions are disclosed, which are suitable for a wide variety of nucleic acid reactions wherein separation of nucleic acid molecules based upon size is required.
    Type: Grant
    Filed: July 22, 1997
    Date of Patent: September 2, 2003
    Assignee: Qiagen Genomics, Inc.
    Inventors: Jeffrey Van Ness, John C. Tabone, J. Jeffry Howbert, John T. Mulligan
  • Publication number: 20030077595
    Abstract: Methods are provided for detecting the binding of a first member to a second member of a ligand pair, comprising the steps of (a) combining a set of first tagged members with a biological sample which may contain one or more second members, under conditions, and for a time sufficient to permit binding of a first member to a second member, wherein said tag is correlative with a particular first member and detectable by non-fluorescent spectrometry, or potentiometry, (b) separating bound first and second members from unbound members, (c) cleaving the tag from the tagged first member, and (d) detecting the tag by non-fluorescent spectrometry, or potentiometry, and therefrom detecting the binding of the first member to the second member .
    Type: Application
    Filed: October 24, 2001
    Publication date: April 24, 2003
    Applicant: QIAGEN Genomics, Inc.
    Inventors: Jeffrey Van Ness, John C. Tabone, J. Jeffry Howbert, John T. Mulligan
  • Patent number: 6444422
    Abstract: A method and system for correlating characteristics (e.g., type of nucleotide) of biomolecules (e.g., DNA) to molecular tags with unique molecular weights that are associated with the biomolecule. In one embodiment. the molecular tags are applied to primers used when synthesizing the biomolecule. The system initially receives a mapping of each characteristic of the biomolecules to the corresponding molecular weight of the molecular tag. The system also receives an indication of the molecular weights detected when analyzing the biomolecules to which the molecular tags have been associated. For each molecular weight detected, the system determines based on the received mapping the characteristic corresponding to the detected molecular weight. The system then indicates that the analyzed biomolecule has the determined characteristic.
    Type: Grant
    Filed: July 21, 1998
    Date of Patent: September 3, 2002
    Assignee: Qiagen Genomics, Inc.
    Inventors: Jeffrey Van Ness, John C. Tabone, J. Jeffry Howbert, John T. Mulligan
  • Patent number: 6365349
    Abstract: A method for depositing biomolecule onto a solid support, the method including the steps of: immersing a tip of a spring probe into a solution of biomolecule; removing said tip from said solution to provide biomolecule solution adhered to said tip; and contacting said biomolecule solution with a solid support to thereby transfer biomolecule solution from said tip to said solid support. The spring probe has a planar tip but it otherwise identical to commercial spring probes. The solution of biomolecule contains a thickening agent in addition to biomolecule, where oligonucleotide is a preferred biomolecule.
    Type: Grant
    Filed: July 21, 1998
    Date of Patent: April 2, 2002
    Assignee: Qiagen Genomics, Inc.
    Inventors: Kristen Moynihan, Jeffrey Van Ness, John C. Tabone
  • Patent number: 6361940
    Abstract: Compositions and methods are provided for increasing the specificity of a probe nucleic acid for a target nucleic acid in a hybridization solution. An abasic residue, deoxyNebularine residue, or a hybotrope is used to increase specificity. A method is provided for identifying useful hybotropes, including salts, water miscible organic solvents, aprotic solvents and organic solvents, on the basis of enthalpy considerations. Hybotropic hybridization and modified oligonucleotides may be used in amplification reactions, such as PCR, sequence analysis methods, and genomic screening methods.
    Type: Grant
    Filed: April 1, 1998
    Date of Patent: March 26, 2002
    Assignee: QIAGEN Genomics, Inc.
    Inventors: Jeffrey Van Ness, John C. Tabone, Lori K. Garrison
  • Patent number: 6312893
    Abstract: Methods and compounds, including compositions therefrom, are provided for determining the sequence of nucleic acid molecules. The methods permit the determination of multiple nucleic acid sequences simultaneously. The compounds are used as tags to generate tagged nucleic acid fragments which are complementary to a selected target nucleic acid molecule. Each tag is correlative with a particular nucleotide and, in a preferred embodiment, is detectable by mass spectrometry. Following separation of the tagged fragments by sequential length, the tags are cleaved from the tagged fragments. In a preferred embodiment, the tags are detected by mass spectrometry and the sequence of the nucleic acid molecule is determined therefrom. The individual steps of the methods can be used in automated format, e.g., by the incorporation into systems.
    Type: Grant
    Filed: July 22, 1997
    Date of Patent: November 6, 2001
    Assignee: Qiagen Genomics, Inc.
    Inventors: Jeffrey Van Ness, John C. Tabone, J. Jeffry Howbert, John T. Mulligan
  • Patent number: 6248521
    Abstract: The present invention provide methods and an apparatus for performing amplification and other enzymatic reactions on nucleic acid molecules that have been printed onto a solid substrate, such as a silicon wafer or glass slide.
    Type: Grant
    Filed: July 21, 1998
    Date of Patent: June 19, 2001
    Assignee: Qiagen Genomics, Inc.
    Inventors: Jeffrey Van Ness, Kristen Moynihan, John C. Tabone
  • Patent number: 6150103
    Abstract: An array of biomolecules is formed from a solid substrate comprising a surface, where said surface is at least partially covered with a layer of poly(ethylenimine) (PEI), and the layer is divided among a plurality of discrete first regions abutted and surrounded by a contiguous second region. The first regions are defined by the presence of a biomolecule and PEI. The second region is defined by the presence of PEI and the substantial absence of the biomolecule. The array may be prepared by a process including the steps of providing a solid substrate having a surface, wherein a layer of poly(ethylenimine) (PEI) covers at least a portion of the surface. The layer contains a plurality of discrete first regions abutted and surrounded by a contiguous second region. The process includes the step of depositing a biomolecule into the first regions while maintaining the second region substantially free of the biomolecule.
    Type: Grant
    Filed: July 21, 1998
    Date of Patent: November 21, 2000
    Assignee: QIAGEN Genomics, Inc.
    Inventors: Jeffrey Van Ness, John C. Tabone, Kristen Moynihan