Abstract: Modular flow cells, devices with modular flow cells, and methods of sequencing using modular flow cells, as well as systems and kits including modular flow cells, are described, permitting sequencing wherein less than the full capacity for sequencing is desired.
Type:
Grant
Filed:
July 20, 2016
Date of Patent:
December 11, 2018
Assignees:
Qiagen Waltham, Inc., Qiagen Instruments AG
Abstract: A method for separating carriers from a solution, the carriers being adapted to have biomolecules, such as DNA, RNA, proteins, polypeptides or carbohydrates attached thereto. The method includes the steps of introducing a tubular member (13) into a receptacle which holds a solution containing the carriers immersing an end portion of the tubular member in the solution attracting and holding the carriers to the end portion and removing the tubular member together with the held carriers from the solution. The attracting and holding step includes the step of providing an under-pressure within the tubular member so as to attract and hold the carriers to a filter (25) being disposed in the end portion of the tubular member. The invention also relates to an apparatus (10) performing such a method.
Type:
Grant
Filed:
February 12, 2003
Date of Patent:
March 6, 2012
Assignee:
Qiagen Instruments AG
Inventors:
Anders Alderborn, David Peterson, Bjorn Ingemarsson, Anna-Lotta Schiller
Abstract: A device (10) is described for automatically separating solid and liquid phases of a suspension (78) and for purifying magnetic microparticles (76) loaded with organic, e.g., biological or biochemical substances. The device includes a process area (12) with devices, which move in a cyclic manner for transporting the magnetic microparticles (76) in the x-direction. A first guide (14) is used for supplying sample containers (P) in the x-direction and second guides (18) are used for supplying reagent containers (R) in the y-direction to the process area (12). The second guides (18) in the y-direction extend at an angle (?) of 30 to 150 ° to the x-direction. A carrier element (24), including carrier plates (24a, 24b, 24c) can be moved back and forth in the x-direction and can be lifted and lowered in the z-direction.
Abstract: A microtitre plate with wells having transparent bottoms, wherein the microtitre plate includes at least one physical deformation between at least two adjacent wells. The physical deformations may have the shape of e.g. a channel, a ridge, a hole, a slit or a step.