Patents Assigned to QMAT, Inc.
  • Publication number: 20190288158
    Abstract: Embodiments relate to fabricating a wafer including a thin, high-quality single crystal GaN layer serving as a template for formation of additional GaN material. A bulk ingot of GaN material is subjected to implantation to form a subsurface cleave region. The implanted bulk material is bonded to a substrate having lattice and/or Coefficient of Thermal Expansion (CTE) properties compatible with GaN. Examples of such substrate materials can include but are not limited to AlN and Mullite. The GaN seed layer is transferred by a controlled cleaving process from the implanted bulk material to the substrate surface. The resulting combination of the substrate and the GaN seed layer, can form a template for subsequent growth of overlying high quality GaN. Growth of high-quality GaN can take place utilizing techniques such as Liquid Phase Epitaxy (LPE) or gas phase epitaxy, e.g., Metallo-Organic Chemical Vapor Deposition (MOCVD) or Hydride Vapor Phase Epitaxy (HVPE).
    Type: Application
    Filed: December 7, 2018
    Publication date: September 19, 2019
    Applicants: QMAT, Inc., QMAT, Inc.
    Inventor: Francois J. HENLEY
  • Patent number: 10186630
    Abstract: Embodiments relate to fabricating a wafer including a thin, high-quality single crystal GaN layer serving as a template for formation of additional GaN material. A bulk ingot of GaN material is subjected to implantation to form a subsurface cleave region. The implanted bulk material is bonded to a substrate having lattice and/or Coefficient of Thermal Expansion (CTE) properties compatible with GaN. Examples of such substrate materials can include but are not limited to AlN and Mullite. The GaN seed layer is transferred by a controlled cleaving process from the implanted bulk material to the substrate surface. The resulting combination of the substrate and the GaN seed layer, can form a template for subsequent growth of overlying high quality GaN. Growth of high-quality GaN can take place utilizing techniques such as Liquid Phase Epitaxy (LPE) or gas phase epitaxy, e.g., Metallo-Organic Chemical Vapor Deposition (MOCVD) or Hydride Vapor Phase Epitaxy (HVPE).
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: January 22, 2019
    Assignee: QMAT, INC.
    Inventor: Francois J. Henley
  • Patent number: 10164144
    Abstract: Embodiments transfer thin layers of material utilized in electronic devices (e.g., GaN for optoelectronic devices), from a donor to a handle substrate. Certain embodiments employ bond-and-release system(s) where release occurs along a cleave plane formed by implantation of particles into the donor. Some embodiments may rely upon release by converting components from solid to liquid under carefully controlled thermal conditions (e.g., solder-based materials and/or thermal decomposition of Indium-containing materials). Some embodiments utilize laser-induced film release processes using epitaxially grown or implanted regions as an optically absorptive region. A single bond-and-release sequence may involve processing an exposed N-face of GaN material. Multiple bond-and-release sequences (involving processing an exposed Ga-face of GaN material) may be employed in series, for example utilizing a temporary handle substrate as an intermediary.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: December 25, 2018
    Assignee: QMAT, Inc.
    Inventors: Francois J. Henley, Sien Kang, Mingyu Zhong, Minghang Li
  • Patent number: 10041187
    Abstract: Embodiments relate to use of a particle accelerator beam to form thin films of material from a bulk substrate. In particular embodiments, a bulk substrate (e.g. donor substrate) having a top surface is exposed to a beam of accelerated particles. In certain embodiments, this bulk substrate may comprise GaN; in other embodiments this bulk substrate may comprise Si, SiC, or other materials. Then, a thin film or wafer of material is separated from the bulk substrate by performing a controlled cleaving process along a cleave region formed by particles implanted from the beam. In certain embodiments this separated material is incorporated directly into an optoelectronic device, for example a GaN film cleaved from GaN bulk material. In some embodiments, this separated material may be employed as a template for further growth of semiconductor materials (e.g. GaN) that are useful for optoelectronic devices.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: August 7, 2018
    Assignee: QMAT, INC.
    Inventors: Francois J. Henley, Sien Kang, Albert Lamm
  • Patent number: 9859458
    Abstract: Embodiments transfer thin layers of material utilized in electronic devices (e.g., GaN for optoelectronic devices), from a donor to a handle substrate. Certain embodiments employ bond-and-release system(s) where release occurs along a cleave plane formed by implantation of particles into the donor. Some embodiments may rely upon release by converting components from solid to liquid under carefully controlled thermal conditions (e.g., solder-based materials and/or thermal decomposition of Indium-containing materials). Some embodiments utilize laser-induced film release processes using epitaxially grown or implanted regions as an optically absorptive region. A single bond-and-release sequence may involve processing an exposed N-face of GaN material. Multiple bond-and-release sequences (involving processing an exposed Ga-face of GaN material) may be employed in series, for example utilizing a temporary handle substrate as an intermediary.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: January 2, 2018
    Assignee: QMAT, INC.
    Inventors: Francois J. Henley, Sien Kang, Mingyu Zhong, Minghang Li
  • Publication number: 20140197419
    Abstract: Embodiments relate to use of a particle accelerator beam to form thin films of material from a bulk substrate. In particular embodiments, a bulk substrate (e.g. donor substrate) having a top surface is exposed to a beam of accelerated particles. In certain embodiments, this bulk substrate may comprise GaN; in other embodiments this bulk substrate may comprise Si, SiC, or other materials. Then, a thin film or wafer of material is separated from the bulk substrate by performing a controlled cleaving process along a cleave region formed by particles implanted from the beam. In certain embodiments this separated material is incorporated directly into an optoelectronic device, for example a GaN film cleaved from GaN bulk material. In some embodiments, this separated material may be employed as a template for further growth of semiconductor materials (e.g. GaN) that are useful for optoelectronic devices.
    Type: Application
    Filed: January 15, 2014
    Publication date: July 17, 2014
    Applicant: QMAT, Inc.
    Inventors: Francois J. HENLEY, Sien KANG, Albert LAMM