Abstract: Provided are an X-ray detector having fabrication fault tolerant structure and a method for manufacturing the same using a micro-transfer printing (MTP) technique. The X-ray detector may include a photodiode layer formed on a base substrate within a pixel area and including a plurality of photodiode pixel units, a dummy layer formed the base substrate within a peripheral area, a plurality of pixel driving integrated chips printed on the photodiode layer, a plurality of primary column and row integrated chips printed on the dummy layer, and metal lines coupling the column and row integrated chips with pixel driving integrated chips and other constituent elements, wherein the plurality of pixel driving integrated chips and primary column and row integrated chips are manufactured separately from the photodiode layer and the dummy layer and attached on the photodiode layer and the dummy layer, respectively.
Abstract: Provided are an X-ray detector having fabrication fault tolerant structure and a method for manufacturing the same using a micro-transfer printing (MTP) technique. The X-ray detector may include a photodiode layer formed on a base substrate within a pixel area and including a plurality of photodiode pixel units, a dummy layer formed the base substrate within a peripheral area, a plurality of pixel driving integrated chips printed on the photodiode layer, a plurality of primary column and row integrated chips printed on the dummy layer, and metal lines coupling the column and row integrated chips with pixel driving integrated chips and other constituent elements, wherein the plurality of pixel driving integrated chips and primary column and row integrated chips are manufactured separately from the photodiode layer and the dummy layer and attached on the photodiode layer and the dummy layer, respectively.
Abstract: Provided are an X-ray detector including a plurality of pixel driving micro integrated chips separately fabricated from a photodiode layer and printed on the photodiode layer and a method for manufacturing the X-ray detector. The X-ray detector may include a photodiode layer and a driver layer. The photodiode layer may include a plurality of photodiodes and be configured to receive X-ray that have passed through a target object and convert the received X-ray to electric signals. The driver layer may be formed on the photodiode layer and include a plurality of micro driving integrated chips each coupled to two or more photodiodes in the photodiode layer. The plurality of pixel driving integrated chips may be manufactured separately from the photodiode layer and printed on the photodiode layer using a micro-transfer printing method.
Abstract: Provided are an X-ray detector including a plurality of pixel driving micro integrated chips separately fabricated from a photodiode layer and printed on the photodiode layer and a method for manufacturing the X-ray detector. The X-ray detector may include a photodiode layer and a driver layer. The photodiode layer may include a plurality of photodiodes and be configured to receive X-ray that have passed through a target object and convert the received X-ray to electric signals. The driver layer may be formed on the photodiode layer and include a plurality of micro driving integrated chips each coupled to two or more photodiodes in the photodiode layer. The plurality of pixel driving integrated chips may be manufactured separately from the photodiode layer and printed on the photodiode layer using a micro-transfer printing method.