Patents Assigned to Quanta BioDesign, Ltd.
-
Patent number: 11505525Abstract: Disclosed are general and “substantially pure” branched discrete polyethylene glycol constructs useful in attaching to a variety of biologically active groups, for example, preferential locators, as well as biologics like enzymes, for use in diagnostics, e.g. imaging, therapeutics, theranostics, and moieties specific for other applications. In its simplest intermediate state, a branched discrete polyethylene glycol construct is terminated at one end by a chemically reactive moiety, “A”, a group that is reactive with a biologic material that creates “A”, which is a biologically reactive group, connected through to a branched core (BC) which has attached at least two dPEG-containing chains, indicated by the solid line, , having terminal groups, which can be charged, non-reactive or reactable moieties and containing between about 2 and 64 dPEG residues.Type: GrantFiled: June 23, 2017Date of Patent: November 22, 2022Assignees: Quanta BioDesign, Ltd., University of WashingtonInventors: Paul D. Davis, D. Scott Wilbur
-
Publication number: 20200317612Abstract: Disclosed are general and “substantially pure” branched discrete polyethylene glycol constructs useful in attaching to a variety of biologically active groups, for example, preferential locators, as well as biologics like enzymes, for use in diagnostics, e.g. imaging, therapeutics, theranostics, and moieties specific for other applications. In its simplest intermediate state, a branched branched discrete polyethylene glycol construct is terminated at one end by a chemically reactive moiety, “A”, a group that is reactive with a biologic material that creates “A”, which is a biologically reactive group, connected through to a branched core (BC) which has attached at least two dPEG-containing chains, indicated by the solid line, , having terminal groups, which can be charged, non-reactive or reactable moieties and containing between about 2 and 64 dPEG residues.Type: ApplicationFiled: October 10, 2019Publication date: October 8, 2020Applicants: Quanta BioDesign, Ltd, University of WashingtonInventors: Paul D. Davis, D. Scott Wilbur
-
Patent number: 8637711Abstract: Aspects of the present invention are directed to novel methods for making discrete polyethylene compounds selectively and specifically to a predetermined number of ethylene oxide units. Methods which can be used to build up larger dPEG compounds (a) containing a wider range of utility to make useful homo- and heterofunctional and branched species, and (b) under reaction configurations and conditions that are milder, more efficient, more diverse in terms of incorporating useful functionality, more controllable, and more versatile then any conventional method reported in the art to date. In addition, the embodiments of the invention allow for processes that allow for significantly improving the ability to purify the intermediates or final product mixtures, making these methods useful for commercial manufacturing dPEGs. Protecting groups and functional groups can be designed to make purification at large scale a practical reality.Type: GrantFiled: January 27, 2011Date of Patent: January 28, 2014Assignee: Quanta BioDesign, Ltd.Inventors: Paul D. Davis, Edward C. Crapps
-
Publication number: 20130052130Abstract: Disclosed are general and “substantially pure” branched discrete polyethylene glycol constructs useful in attaching to a variety of biologically active groups, for example, preferential locators, as well as biologics like enzymes, for use in diagnostics, e.g. imaging, therapeutics, theranostics, and moieties specific for other applications. In its simplest intermediate state, a branched discrete polyethylene glycol construct is terminated at one end by a chemically reactive moiety, “A”, a group that is reactive with a biologic material that creates “A”, which is a biologically reactive group, connected through to a branched core (BC) which has attached at least two dPEG-containing chains, indicated by the solid line, , having terminal groups, which can be charged, non-reactive or reactable moieties and containing between about 2 and 64 dPEG residues.Type: ApplicationFiled: August 30, 2012Publication date: February 28, 2013Applicants: UNIVERSITY OF WASHINGTON, QUANTA BIODESIGN, LTD.Inventors: Paul D. Davis, D. Scott Wilbur
-
Patent number: 7888536Abstract: Aspects of the present invention are directed to novel methods for making discrete polyethylene compounds selectively and specifically to a predetermined number of ethylene oxide units. Methods which can be used to build up larger dPEG compounds (a) containing a wider range of utility to make useful homo- and heterofunctional and branched species, and (b) under reaction configurations and conditions that are milder, more efficient, more diverse in terms of incorporating useful functionality, more controllable, and more versatile then any conventional method reported in the art to date. In addition, the embodiments of the invention allow for processes that allow for significantly improving the ability to purify the intermediates or final product mixtures, making these methods useful for commerial manufacturing dPEGs. Protecting groups and functional groups can be designed to make purification at large scale a practical reality.Type: GrantFiled: August 15, 2005Date of Patent: February 15, 2011Assignee: Quanta BioDesign, Ltd.Inventors: Paul D. Davis, Edward C. Crapps