Patents Assigned to QUANTUM DEVICES, LLC
  • Patent number: 9799815
    Abstract: A thermoelectric converter is provided where an n-type boron carbide element is paired with a p-type boron carbide element and placed between a eat sink and a high temperature are, such as the ocean in which a submarine operates, and the interior of that submarine, respectively. Boron carbide elements suitable for use in this invention are deposited from meta carborane (n-type) together with dopants to emphasize n-type character, such as chromocene, and orthocarborane, together with dopants to emphasize p-type character, such as 1,4 diaminobenzene to form the p-type element.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: October 24, 2017
    Assignee: QUANTUM DEVICES, LLC
    Inventor: Peter Dowben
  • Patent number: 9748340
    Abstract: Graphene FETs exhibit low power consumption and high switching rates taking advantage of the excellent mobility in graphene deposited on a rocksalt oxide (111) by chemical vapor deposition, plasma vapor deposition or molecular beam epitaxy. A source, drain and electrical contacts are formed on the graphene layer. These devices exhibit band gap phenomena on the order of greater than about 0.5 eV, easily high enough to serve as high speed low power logic devices. Integration of this construction technology, based on the successful deposition of few layer graphene on the rocksalt oxide (111) with SI CMOS is straightforward.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: August 29, 2017
    Assignee: QUANTUM DEVICES, LLC
    Inventor: Jeffry Kelber
  • Patent number: 9620654
    Abstract: A voltage switchable coherent spin field effect transistor is provided by depositing a ferromagnetic base like cobalt on a substrate. A chrome oxide layer is formed on the cobalt by MBE at room at UHV at room temperature. There was thin cobalt oxide interface between the chrome oxide and the cobalt. Other magnetic materials may be employed. A few ML field of graphene is deposited on the chrome oxide by molecular beam epitaxy, and a source and drain are deposited of base material. The resulting device is scalable, provides high on/off rates, is stable and operable at room temperature and easily fabricated with existing technology.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: April 11, 2017
    Assignee: QUANTUM DEVICES, LLC
    Inventors: Jeffry Kelber, Peter Dowben
  • Patent number: 9614149
    Abstract: A coherent spin field effect transistor is provided by depositing a ferromagnetic base like cobalt on a substrate. A magnetic oxide layer is formed on the cobalt by annealing at temperatures on the order of 1000° K to provide a few monolayer thick layer. Where the gate is cobalt, the resulting magnetic oxide is Co3O4 (111). Other magnetic materials and oxides may be employed. A few ML field of graphene is deposited on the cobalt (III) oxide by molecular beam epitaxy, and a source and drain are deposited of base material. The resulting device is scalable, provides high on/off rates, is stable and operable at room temperature and easily fabricated with existing technology.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: April 4, 2017
    Assignee: Quantum Devices, LLC
    Inventors: Jeffry A. Kelber, Peter Dowben
  • Patent number: 9379232
    Abstract: The invention relates to a magneto-electric spin-FET including a gate film of chromia and a thin film of a conductive channel material which may be graphene, InP, GaAs, GaSb, PbS, MoS2, WS2, MoSe2, WSe2 and mixtures thereof. The chromia, or other magneto-electric, and conduction channel material are in intimate contact along an interface there between. The resulting magneto-electric device may be voltage-controlled and provide non-volatile memory.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: June 28, 2016
    Assignee: QUANTUM DEVICES, LLC
    Inventors: Jeffry A. Kelber, Christian Binek, Peter Arnold Bowden, Kirill Belashchenko
  • Patent number: 9324960
    Abstract: Novel semiconducting polymers have been formed via the electron-induced cross-linking of orthocarborane B10C2H2 and 1,4-diaminobenzene. The films were formed by co-condensation of the molecular precursors and 200 eV electron-induced cross-linking under ultra-high vacuum (UHV) conditions. Ultraviolet photoemission spectra show that the compound films display a shift of the valence band maximum from ˜4.3 eV below the Fermi level for pure boron carbide to ?1.7 eV below the Fermi level when diaminobenzene is added. The surface photovoltage effect decreases with decreasing B/N atomic ratio. A neutron detector comprises the polymer as the p-type semiconductor to be paired with an n-type semiconductor.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: April 26, 2016
    Assignee: QUANTUM DEVICES, LLC
    Inventors: Peter Dowben, Jeffry Kelber
  • Publication number: 20160093746
    Abstract: A voltage switchable coherent spin field effect transistor is provided by depositing a ferromagnetic base like cobalt on a substrate. A chrome oxide layer is formed on the cobalt by MBE at room at UHV at room temperature. There was thin cobalt oxide interface between the chrome oxide and the cobalt. Other magnetic materials may be employed. A few ML field of graphene is deposited on the chrome oxide by molecular beam epitaxy, and a source and drain are deposited of base material. The resulting device is scalable, provides high on/off rates, is stable and operable at room temperature and easily fabricated with existing technology.
    Type: Application
    Filed: April 3, 2015
    Publication date: March 31, 2016
    Applicant: QUANTUM DEVICES, LLC
    Inventors: Jeffry KELBER, Peter DOWBEN
  • Patent number: 9202899
    Abstract: A voltage switchable non-local spin-FET is disclosed which provides a layer of chromia over a ferromagnetic substrate, such as cobalt. A film of graphene overlays the chromia, with a protective layer of metal oxide like cobalt oxide or iron oxide there between to prevent catalytic degradation of the graphene, which may occur. The graphene is provided with a contact, or source and drain, depending on the application. The spin-FET, which exhibits magnetic remanence, may be provided with a top gate of, e.g., cobalt or other ferromagnet such as iron. As an alternative to the ferromagnetic substrate, the device may be formed on a silicon or gallium arsenide base, or directly on a metal interconnect of an integrated circuit.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: December 1, 2015
    Assignee: Quantum Devices, LLC
    Inventor: Jeffry Kelber
  • Publication number: 20150200283
    Abstract: A voltage switchable non-local spin-FET is disclosed which provides a layer of chromia over a ferromagnetic substrate, such as cobalt. A film of graphene overlays the chromia, with a protective layer of metal oxide like cobalt oxide or iron oxide there between to prevent catalytic degradation of the graphene, which may occur. The graphene is provided with a contact, or source and drain, depending on the application. The spin-FET, which exhibits magnetic remanence, may be provided with a top gate of, e.g., cobalt or other ferromagnet such as iron. As an alternative to the ferromagnetic substrate, the device may be formed on a silicon or gallium arsenide base, or directly on a metal interconnect of an integrated circuit.
    Type: Application
    Filed: March 25, 2015
    Publication date: July 16, 2015
    Applicant: QUANTUM DEVICES, LLC
    Inventor: Jeffry KELBER
  • Patent number: 8860161
    Abstract: Solid state neutron detection utilizing gadolinium as a neutron absorber is described. The new class of narrow-gap neutron-absorbing semiconducting materials, including Gd-doped HfO2, Gd-doped EuO, Gd-doped GaN, Gd2O3 and GdN are included in three types of device structures: (1) a p-n heterostructure diode with a ˜30 ?m Gd-loaded semiconductor grown on a conventional semiconductor (Si or B-doped Si); (2) a p-n junction or a p-i-n trilayer diode with a Gd-loaded semiconductoron one side and single-crystal semiconducting Li2B4O7 layer on the other side of the heterojunction; and (3) a p-n junction or a p-i-n trilayer diode with a Gd-loaded semiconductoron on one side and a boron nitride (BN) semiconductor layer on the other side of the heterojunction.
    Type: Grant
    Filed: July 5, 2012
    Date of Patent: October 14, 2014
    Assignee: Quantum Devices, LLC
    Inventors: Peter A. Dowben, Jinke Tang, David Wisbey
  • Publication number: 20140231888
    Abstract: The invention relates to a magneto-electric spin-FET including a gate film of chromia and a thin film of a conductive channel material which may be graphene, InP, GaAs, GaSb, PbS, MoS2, WS2, MoSe2, WSe2 and mixtures thereof. The chromia, or other magneto-electric, and conduction channel material are in intimate contact along an interface there between. The resulting magneto-electric device may be voltage-controlled and provide non-volatile memory.
    Type: Application
    Filed: February 18, 2014
    Publication date: August 21, 2014
    Applicants: Quantum Devices, LLC, University of North Texas
    Inventors: Jeffry A. Kelber, Christian Binek, Peter Arnold Bowden, Kirill Belashchenko
  • Publication number: 20140217375
    Abstract: Novel semiconducting polymers have been formed via the electron-induced cross-linking of orthocarborane B10C2H2 and 1,4-diaminobenzene. The films were formed by co-condensation of the molecular precursors and 200 eV electron-induced cross-linking under ultra-high vacuum (UHV) conditions. Ultraviolet photoemission spectra show that the compound films display a shift of the valence band maximum from ˜4.3 eV below the Fermi level for pure boron carbide to ?1.7 eV below the Fermi level when diaminobenzene is added. The surface photovoltage effect decreases with decreasing B/N atomic ratio. A neutron detector comprises the polymer as the p-type semiconductor to be paired with an n-type semiconductor.
    Type: Application
    Filed: June 4, 2012
    Publication date: August 7, 2014
    Applicant: QUANTUM DEVICES, LLC
    Inventors: Peter Dowben, Jeffry Kelber
  • Publication number: 20140203382
    Abstract: Boron carbide polymers prepared from orthocarborane icosahedra cross-linked with a moiety A wherein A is selected from the group consisting of benzene, pyridine. 1, 4-diaminobenzene and mixtures thereof give positive magnetoresistance effects of 30%-80% at room temperature. The novel polymers may be doped with transitional metals to improve electronic and spin performance. These polymers may be deposited by any of a variety of techniques, and may be used in a wide variety of devices including magnetic tunnel junctions, spin-memristors and non-local spin valves.
    Type: Application
    Filed: December 6, 2013
    Publication date: July 24, 2014
    Applicant: Quantum Devices, LLC
    Inventors: JEFFRY KELBER, Peter Dowben
  • Publication number: 20140170779
    Abstract: A coherent spin field effect transistor is provided by depositing a ferromagnetic base like cobalt on a substrate. A magnetic oxide layer is formed on the cobalt by annealing at temperatures on the order of 1000° K to provide a few monolayer thick layer. Where the gate is cobalt, the resulting magnetic oxide is Co3O4 (111). Other magnetic materials and oxides may be employed. A few ML field of graphene is deposited on the cobalt (III) oxide by molecular beam epitaxy, and a source and drain are deposited of base material. The resulting device is scalable, provides high on/off rates, is stable and operable at room temperature and easily fabricated with existing technology.
    Type: Application
    Filed: February 25, 2014
    Publication date: June 19, 2014
    Applicant: Quantum Devices, LLC
    Inventors: Jeffry A. Kelber, Peter Dowben
  • Patent number: 8748957
    Abstract: A coherent spin field effect transistor is provided by depositing a ferromagnetic base like cobalt on a substrate. A magnetic oxide layer is formed on the cobalt by annealing at temperatures on the order of 1000° K to provide a few monolayer thick layer. Where the gate is cobalt, the resulting magnetic oxide is Co3O4(111). Other magnetic materials and oxides may be employed. A few ML field of graphene is deposited on the cobalt (III) oxide by molecular beam epitaxy, and a source and drain are deposited of base material. The resulting device is scalable, provides high on/off rates, is stable and operable at room temperature and easily fabricated with existing technology.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: June 10, 2014
    Assignee: Quantum Devices, LLC
    Inventors: Jeffry Kelber, Peter Dowben
  • Publication number: 20130248824
    Abstract: Graphene FETs exhibit low power consumption and high switching rates taking advantage of the excellent mobility in graphene deposited on a rocksalt oxide (111) by chemical vapor deposition, plasma vapor deposition or molecular beam epitaxy. A source, drain and electrical contacts are formed on the graphene layer. These devices exhibit band gap phenomena on the order of greater than about 0.5 eV, easily high enough to serve as high speed low power logic devices. Integration of this construction technology, based on the successful deposition of few layer graphene on the rocksalt oxide (111) with SI CMOS is straightforward.
    Type: Application
    Filed: March 22, 2012
    Publication date: September 26, 2013
    Applicant: QUANTUM DEVICES, LLC
    Inventor: Jeffry Kelber
  • Publication number: 20130233368
    Abstract: A thermoelectric converter is provided where an n-type boron carbide element is paired with a p-type boron carbide element and placed between a eat sink and a high temperature are, such as the ocean in which a submarine operates, and the interior of that submarine, respectively. Boron carbide elements suitable for use in this invention are deposited from meta carborane (n-type) together with dopants to emphasize n-type character, such as chromocene, and orthocarborane, together with dopants to emphasize p-type character, such as 1,4 diaminobenzene to form the p-type element.
    Type: Application
    Filed: September 6, 2012
    Publication date: September 12, 2013
    Applicant: QUANTUM DEVICES, LLC
    Inventor: PETER DOWBEN
  • Publication number: 20130009262
    Abstract: Solid state neutron detection utilizing gadolinium as a neutron absorber is described. The new class of narrow-gap neutron-absorbing semiconducting materials, including Gd-doped HfO2, Gd-doped EuO, Gd-doped GaN, Gd2O3 and GdN are included in three types of device structures: (1) a p-n heterostructure diode with a ˜30 ?m Gd-loaded semiconductor grown on a conventional semiconductor (Si or B-doped Si); (2) a p-n junction or a p-i-n trilayer diode with a Gd-loaded semiconductoron one side and single-crystal semiconducting Li2B4O7 layer on the other side of the heterojunction; and (3) a p-n junction or a p-i-n trilayer diode with a Gd-loaded semiconductoron on one side and a boron nitride (BN) semiconductor layer on the other side of the heterojunction.
    Type: Application
    Filed: July 5, 2012
    Publication date: January 10, 2013
    Applicant: QUANTUM DEVICES, LLC
    Inventors: PETER A. DOWBEN, Jinke Tang, David Wisbey