Patents Assigned to QuantumScape Corporation
  • Patent number: 10889205
    Abstract: This patent application is directed to thermal management systems of vehicles with an electric powertrain. More specifically, the battery system and one or more powertrain components and/or cabin climate control components of a vehicle share the same thermal circuit as the battery module through which heat can be exchanged between the battery module and one or more powertrain or climate control components as needed.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: January 12, 2021
    Assignee: QuantumScape Corporation
    Inventors: Kevin Hettrich, Tomasz Wojcik, Weston Arthur Hermann
  • Patent number: 10862161
    Abstract: Set forth herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Also set forth herein are lithium-stuffed garnet thin films having fine grains therein. Disclosed herein are novel and inventive methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Also disclosed herein are novel electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Also set forth herein are methods for preparing novel structures, including dense thin (<50 um) free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: December 8, 2020
    Assignee: QuantumScape Corporation
    Inventors: Dong Hee Anna Choi, Niall Donnelly, Tim Holme, Will Hudson, Sriram Iyer, Oleh Karpenko, Mohit Singh, Adrian Winoto
  • Patent number: 10840544
    Abstract: Set forth herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Also set forth herein are lithium-stuffed garnet thin films having fine grains therein. Disclosed herein are novel and inventive methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Also disclosed herein are novel electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Also set forth herein are methods for preparing novel structures, including dense thin (<50 um) free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: November 17, 2020
    Assignee: QuantumScape Corporation
    Inventors: Tim Holme, Niall Donnelly, Will Hudson, Sriram Iyer, Oleh Karpenko, Mohit Singh, Adrian Winoto, Dong Hee Anna Choi
  • Patent number: 10826115
    Abstract: The present disclosure sets forth battery components for secondary and/or traction batteries. Described herein are new solid-state lithium (Li) conducting electrolytes including monolithic, single layer, and bi-layer solid-state sulfide-based lithium ion (Li30) conducting catholytes or electrolytes. These solid-state ion conductors have particular chemical compositions which are arranged and/or bonded through both crystalline and amorphous bonds. Also provided herein are methods of making these solid-state sulfide-based lithium ion conductors including new annealing methods. These ion conductors are useful, for example, as membrane separators in rechargeable batteries.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: November 3, 2020
    Assignee: QuantumScape Corporation
    Inventors: Tim Holme, Zhebo Chen, William Hudson, Kian Kerman, Sunil Mair, Amal Mehrotra, Kim Van Berkel, Cheng-Chieh Chao, Drake Nguyen
  • Patent number: 10804564
    Abstract: Set forth herein are pellets, thin films, and monoliths of lithium-stuffed garnet electrolytes having engineered surfaces. These engineered surfaces have a list of advantageous properties including, but not limited to, low surface area resistance, high Li+ ion conductivity, low tendency for lithium dendrites to form within or thereupon when the electrolytes are used in an electrochemical cell. Other advantages include voltage stability and long cycle life when used in electrochemical cells as a separator or a membrane between the positive and negative electrodes. Also set forth herein are methods of making these electrolytes including, but not limited to, methods of annealing these electrolytes under controlled atmosphere conditions. Set forth herein, additionally, are methods of using these electrolytes in electrochemical cells and devices. The instant disclosure further includes electrochemical cells which incorporate the lithium-stuffed garnet electrolytes set forth herein.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: October 13, 2020
    Assignee: QuantumScape Corporation
    Inventors: Arnold Allenic, Cheng-Chieh Chao, Lei Cheng, Niall Donnelly, William H. Gardner, Tim Holme, Sriram Iyer, Shuang Li
  • Patent number: 10784497
    Abstract: The present invention is directed to battery system and operation thereof. In an embodiment, lithium material is plated onto the anode region of a lithium secondary battery cell by a pulsed current. The pulse current may have both positive and negative polarity. One of the polarities causes lithium material to plate onto the anode region, and the opposite polarity causes lithium dendrites to be removed. There are other embodiments as well.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: September 22, 2020
    Assignee: QuantumScape Corporation
    Inventors: Timothy Holme, Marie Mayer, Ghyrn Loveness, Zhebo Chen, Rainer Fasching
  • Patent number: 10746468
    Abstract: Setter plates are fabricated from Li-stuffed garnet materials having the same, or substantially similar, compositions as a garnet Li-stuffed solid electrolyte. The Li-stuffed garnet setter plates, set forth herein, reduce the evaporation of Li during a sintering treatment step and/or reduce the loss of Li caused by diffusion out of the sintering electrolyte. Li-stuffed garnet setter plates, set forth herein, maintain compositional control over the solid electrolyte during sintering when, upon heating, lithium is prone to diffuse out of the solid electrolyte.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: August 18, 2020
    Assignee: QuantumScape Corporation
    Inventors: Sriram Iyer, Tim Holme, Niall Donnelly
  • Patent number: 10651502
    Abstract: Set forth herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Also set forth herein are lithium-stuffed garnet thin films having fine grains therein. Disclosed herein are novel and inventive methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Also disclosed herein are novel electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Also set forth herein are methods for preparing novel structures, including dense thin (<50 um) free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: May 12, 2020
    Assignee: QuantumScape Corporation
    Inventors: Tim Holme, Niall Donnelly, Sriram Iyer, Adrian Winoto, Mohit Singh, Will Hudson, Dong Hee Anna Choi, Oleh Karpenko
  • Patent number: 10563918
    Abstract: Setter plates are fabricated from Li-stuffed garnet materials having the same, or substantially similar, compositions as a garnet Li-stuffed solid electrolyte. The Li-stuffed garnet setter plates, set forth herein, reduce the evaporation of Li during a sintering treatment step and/or reduce the loss of Li caused by diffusion out of the sintering electrolyte. Li-stuffed garnet setter plates, set forth herein, maintain compositional control over the solid electrolyte during sintering when, upon heating, lithium is prone to diffuse out of the solid electrolyte.
    Type: Grant
    Filed: September 10, 2019
    Date of Patent: February 18, 2020
    Assignee: QuantumScape Corporation
    Inventors: Sriram Iyer, Tim Holme, Niall Donnelly
  • Patent number: 10535878
    Abstract: The present invention provides an energy storage device comprising a cathode region or other element. The device has a major active region comprising a plurality of first active regions spatially disposed within the cathode region. The major active region expands or contracts from a first volume to a second volume during a period of a charge and discharge. The device has a catholyte material spatially confined within a spatial region of the cathode region and spatially disposed within spatial regions not occupied by the first active regions. In an example, the catholyte material comprises a lithium, germanium, phosphorous, and sulfur (“LGPS”) containing material configured in a polycrystalline state. The device has an oxygen species configured within the LGPS containing material, the oxygen species having a ratio to the sulfur species of 1:2 and less to form a LGPSO material.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: January 14, 2020
    Assignee: QuantumScape Corporation
    Inventors: Cheng-Chieh Chao, Zhebo Chen, Tim Holme, Marie A. Mayer, Gilbert N. Riley, Jr.
  • Patent number: 10511012
    Abstract: Battery systems using coated conversion materials as the active material in battery cathodes are provided herein. Protective coatings may be an oxide, phosphate, or fluoride, and may be lithiated. The coating may selectively isolate the conversion material from the electrolyte. Methods for fabricating batteries and battery systems with coated conversion material are also provided herein.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: December 17, 2019
    Assignee: QuantumScape Corporation
    Inventors: Rainer Fasching, Joseph Han, Jon Shan, Ghyrn E. Loveness, Eric Tulsky, Timothy Holme
  • Patent number: 10439251
    Abstract: Disclosed herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Also disclosed herein are lithium-stuffed garnet thin films having fine grains therein. Also disclosed herein are methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Also disclosed herein are electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Also disclosed herein are methods for preparing dense thin (<50 um) free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device. Also disclosed herein are sintering techniques, e.g.
    Type: Grant
    Filed: October 11, 2017
    Date of Patent: October 8, 2019
    Assignee: QuantumScape Corporation
    Inventors: Tim Holme, Niall Donnelly, Sriram Iyer, Adrian Winoto, Mohit Singh, Will Hudson, Dong Hee Anna Choi, Oleh Karpenko, Kian Kerman
  • Patent number: 10431806
    Abstract: The present invention is directed to battery technologies and processing techniques thereof. In various embodiments, ceramic electrolyte powder material (or component thereof) is mixed with two or more flux to form a fluxed powder material. The fluxed powder material is shaped and heated again at a temperature less than 1100° C. to form a dense lithium conducting material. There are other variations and embodiments as well.
    Type: Grant
    Filed: February 23, 2016
    Date of Patent: October 1, 2019
    Assignee: QuantumScape Corporation
    Inventors: Niall Donnelly, Tim Holme
  • Patent number: 10431850
    Abstract: Disclosed herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Also disclosed herein are lithium-stuffed garnet thin films having fine grains therein. Also disclosed herein are methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Also disclosed herein are electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Also disclosed herein are methods for preparing dense thin (<50 um) free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device. Also disclosed herein are sintering techniques, e.g.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: October 1, 2019
    Assignee: QuantumScape Corporation
    Inventors: Dong Hee Anna Choi, Niall Donnelly, Tim Holme, Will Hudson, Sriram Iyer, Oleh Karpenko, Kian Kerman, Mohit Singh, Adrian Winoto
  • Patent number: 10422581
    Abstract: Setter plates are fabricated from Li-stuffed garnet materials having the same, or substantially similar, compositions as a garnet Li-stuffed solid electrolyte. The Li-stuffed garnet setter plates, set forth herein, reduce the evaporation of Li during a sintering treatment step and/or reduce the loss of Li caused by diffusion out of the sintering electrolyte. Li-stuffed garnet setter plates, set forth herein, maintain compositional control over the solid electrolyte during sintering when, upon heating, lithium is prone to diffuse out of the solid electrolyte.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: September 24, 2019
    Assignee: QuantumScape Corporation
    Inventors: Sriram Iyer, Tim Holme, Niall Donnelly
  • Patent number: 10403932
    Abstract: Set forth herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Set forth herein are lithium-stuffed garnet thin films having fine grains therein. Disclosed herein are novel and inventive methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Disclosed herein are novel electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Set forth herein are methods for preparing novel structures, including dense thin free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: September 3, 2019
    Assignee: QuantumScape Corporation
    Inventors: Dong Hee Anna Choi, Niall Donnelly, Tim Holme, Will Hudson, Sriram Iyer, Oleh Karpenko, Mohit Singh, Adrian Winoto
  • Patent number: 10403931
    Abstract: Set forth herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Also set forth herein are lithium-stuffed garnet thin films having fine grains therein. Disclosed herein are novel and inventive methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Also disclosed herein are novel electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Also set forth herein are methods for preparing novel structures, including dense thin (<50 um) free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: September 3, 2019
    Assignee: QuantumScape Corporation
    Inventors: Tim Holme, Niall Donnelly
  • Patent number: 10369899
    Abstract: Set forth herein are systems and methods for determining battery heating conditions and pre-heating lead times of at least a minute or more, based on input parameters and sets of input parameters, to predictively and dynamically heat a secondary battery so that the battery has a specific power output and performance level when used in an electric or hybrid vehicle application.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: August 6, 2019
    Assignee: QuantumScape Corporation
    Inventors: Kevin Hettrich, Tomasz Wojcik
  • Patent number: 10374254
    Abstract: Set forth herein are electrolyte compositions that include both organic and inorganic constituent components and which are suitable for use in rechargeable batteries. Also set forth herein are methods and systems for making and using these composite electrolytes.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: August 6, 2019
    Assignee: QuantumScape Corporation
    Inventors: Kim Van Berkel, Tim Holme, Mohit Singh, Amal Mehrotra, Zhebo Chen, Kian Kerman, Wes Hermann, William Hudson
  • Patent number: 10361455
    Abstract: Set forth herein are pellets, thin films, and monoliths of lithium-stuffed garnet electrolytes having engineered surfaces. These engineered surfaces have a list of advantageous properties including, but not limited to, low surface area resistance, high Li+ ion conductivity, low tendency for lithium dendrites to form within or thereupon when the electrolytes are used in an electrochemical cell. Other advantages include voltage stability and long cycle life when used in electrochemical cells as a separator or a membrane between the positive and negative electrodes. Also set forth herein are methods of making these electrolytes including, but not limited to, methods of annealing these electrolytes under controlled atmosphere conditions. Set forth herein, additionally, are methods of using these electrolytes in electrochemical cells and devices. The instant disclosure further includes electrochemical cells which incorporate the lithium-stuffed garnet electrolytes set forth herein.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: July 23, 2019
    Assignee: QuantumScape Corporation
    Inventors: Arnold Allenic, Cheng-Chieh Chao, Lei Cheng, Niall Donnelly, Will Gardner, Tim Holme, Sriram Iyer, Shuang Li