Abstract: The disclosure relates to a method to prepare surface stabilized quantum dots by dispersing quantum dots having at least a first type of ligands bonded to their surface in a solvent having at least one multifunctional compound. The multifunctional compound includes at least a first functional group and at least a second functional group. The first functional group of the multifunctional compound is able to bind to the outer surface of the quantum dots and the second functional group of the multifunctional compound is able to interact with a first functional group of the first type of ligands provided on the outer surface of the quantum dots. The disclosure further relates to surface stabilized quantum dots obtainable by this method, to articles including such quantum dots and to the use of such quantum dots for use in on-chip color conversion applications.
Abstract: The present disclosure relates to quantum dots with a core of III-V material, a first layer of II-VI material and an external shell of II-VI material to be used, for example, in downconverters. The external shell is preferably made of an alloy of Zn and Cd with Se or S. Introducing a small amount of Cd in the external shell provides excellent absorbance performance in blue, violet and UV wavelengths. The amount of Cd needed for this increase in absorbance can be very low. Further, the emitted light can be nearly monochromatic, which is especially interesting in electronic applications.
Abstract: The disclosure relates to a method to prepare surface stabilized quantum dots by dispersing quantum dots having at least a first type of ligands bonded to their surface in a solvent having at least one multifunctional compound. The multifunctional compound includes at least a first functional group and at least a second functional group. The first functional group of the multifunctional compound is able to bind to the outer surface of the quantum dots and the second functional group of the multifunctional compound is able to interact with a first functional group of the first type of ligands provided on the outer surface of the quantum dots. The disclosure further relates to surface stabilized quantum dots obtainable by this method, to articles including such quantum dots and to the use of such quantum dots for use in on-chip color conversion applications.
Abstract: The present disclosure relates to quantum dots with a core of III-V material, a first layer of II-VI material and an external shell of II-VI material to be used, for example, in downconverters. The external shell is preferably made of an alloy of Zn and Cd with Se or S. Introducing a small amount of Cd in the external shell provides excellent absorbance performance in blue, violet and UV wavelengths. The amount of Cd needed for this increase in absorbance can be very low. Further, the emitted light can be nearly monochromatic, which is especially interesting in electronic applications.
Abstract: This disclosure relates to quantum dots with a core of III-V material, a first layer of II-VI material and an external shell of II-VI material to be used, for example, in downconverters. The external shell is preferably made of an alloy of Zn and Cd with Se or S. The inventors have demonstrated that introducing a small amount of Cd in the external shell provides excellent absorbance performance in blue, violet and UV wavelengths. The amount of Cd needed for this increase in absorbance can be very low. The inventors have shown that the emitted light can be nearly monochromatic, which is especially interesting in electronic applications.