Abstract: A magnetic information card encoding apparatus wherein the train of clock pulses used to synchronize the release of binary data from a storage register to a recorder head is generated by the motion of the card itself. Structural means forms a card receiving slot into which the card is manually inserted and removed. A rotatable carriage assembly consists of a drive shaft, photoelectric means responsive to rotation of the drive shaft for generating the clock pulse train, an idler wheel, and spring biasing means for urging the idler wheel against the drive shaft in a friction drive relationship. A second spring biasing means urges the carriage assembly to rotate such that the idler wheel frictionally engages the card so as to be driven thereby. A switch is actuated by the leading edge of the card to provide a signal defining the position of the card in the slot. The arrangement is such that the information card is erased on insertion and encoded on withdrawal.
Abstract: A flexible resilient magnetic particle type information card capable of correctly reading information thereon after such card has been bent double on itself and creased, said card comprising a flexible base, a layer of uniformly distributed magnetic particles thereon, and a flexible overlayer of nonmagnetic material, said over layer having a thickness of at least 2 mils, said layer of magnetic particles being magnetically encoded, the magnetic flux transitions of such encoding being at least 0.02 inch apart and said magnetic particle layer being enclosed between the base layer and over layer and spaced from the edges of the card.A method of storing information in binary data form comprising magnetically recording information on a magnetic strip that has an over layer of at least 2 mils by inducing transitions in the magnetization of the strip at a minimum spacing of 0.02 - 0.1 inch.
Abstract: A flexible resilient magnetic particle type information card capable of correctly reading information thereon after such card has been bent double on itself and creased, said card comprising a flexible base, a layer of uniformly distributed magnetic particles thereon, and a flexible overlayer of nonmagnetic material, said over layer having a thickness of at least 2 mils, said layer of magnetic particles being magnetically encoded, the magnetic flux transitions of such encoding being at least 0.02 inch apart and said magnetic particle layer being enclosed between the base layer and over layer and spaced from the edges of the card.A method of storing information in binary data form comprising magnetically recording information on a magnetic strip that has an over layer of at least 2 mils by inducing transitions in the magnetization of the strip at a minimum spacing of 0.02-0.1 inch.