Abstract: A method for gapping a magnetic component is disclosed. The method includes: forming a feature on a substrate, the feature being a depression defining an inside surface; disposing a first conductive pattern on the substrate and the inside surface of the feature; disposing a permeability material on the inside surface of the feature and the first conductive pattern; disposing a substrate material on the substrate and the feature; disposing a second conductive pattern on the substrate material to wrap the permeability material between the first conductive pattern and the second conductive pattern to define at least one electrical circuit to facilitate a magnetic field in the permeability material; and gapping the permeability material to remove at least a portion of the permeability material to produce a gap in the at least a portion of the permeability material.
Abstract: Disclosed are apparatus and methods for arrayed embedded magnetic components that include magnetic devices that have a core that is embedded between two or more substrates and a winding pattern surrounding the core that is implemented on and through the two or more substrates. The winding pattern is operable to induce a magnetic flux within the core when energized by a time varying voltage potential. The winding pattern may be implemented by printed circuit layers, plated vias, other electrically conductive elements, and combinations thereof. Arrayed embedded magnetic components include two or more electrically interconnected magnetic devices positioned side-by-side in a horizontal integration, positioned top-to-bottom in a vertical integration, or combinations thereof. The magnetic devices may have a magnetic functionality such as, but not limited to, a transformer, inductor, and filter.
Abstract: Disclosed are apparatus and methods for arrayed embedded magnetic components that include magnetic devices that have a core that is embedded between two or more substrates and a winding pattern surrounding the core that is implemented on and through the two or more substrates. The winding pattern is operable to induce a magnetic flux within the core when energized by a time varying voltage potential. The winding pattern may be implemented by printed circuit layers, plated vias, other electrically conductive elements, and combinations thereof. Arrayed embedded magnetic components include two or more electrically interconnected magnetic devices positioned side-by-side in a horizontal integration, positioned top-to-bottom in a vertical integration, or combinations thereof. The magnetic devices may have a magnetic functionality such as, but not limited to, a transformer, inductor, and filter.
Abstract: Disclosed is an apparatus and method for a magnetic component. The magnetic component includes a substrate having a feature and a first conductive pattern disposed on the feature. The magnetic component also includes a permeability material disposed within the feature. A substrate material is disposed on the substrate to facilitate substantial enclosure of the permeability material between the substrate and the substrate material, where the substrate material has a second conductive pattern. The first conductive pattern and the second conductive pattern cooperate to be capable of facilitating magnetic properties of the permeability material.