Abstract: A method for controlling longwall mining operations, having a face conveyor, at least one extraction machine, and a hydraulic shield support, in underground coal mining. At least one sensor is disposed on the shield support frames for acquiring solid-borne noise data generated by the engagement of the extraction machine in coal and/or country rock. A cut of the extraction machine into the country rock is determined in a downstream computer on the basis of recorded vibration data that corresponds to the generated solid-borne noise.
Abstract: A method for maintaining, in a controlled manner, a top canopy/coal-face distance expedient for rock mechanics, in longwall mining operations in underground coal mining, using a face conveyor, at least one extraction machine, and a hydraulic shield support frame. Inclination sensors are disposed on at least three of the four main components of the shield support frame, including floor skid, gob shield, support connection rods and gob-side area of the top canopy. An inclination of the top canopy and floor skid are ascertained via the sensors. From the ascertained inclination data, in a computer, the effects on a top canopy/coal face distance are determined when changes in an angle of inclination of the top canopy occur. An automatic adjustment of decisive cycle parameters of the shield support frame are carried out, wherein the work cycle comprises retraction, advancement and setting processes.
Abstract: A method for controlling the extraction capacity of longwall operations in underground coal mining, including ascertaining the respective demand of the longwall operations, for air-technology and climate-technology resources, as influencing variables for a projected delivery quantity on the basis of data applicable to equipment of the longwall operations and to mineral deposit parameters, and storing the ascertained influencing variables in a computer as target data. Actual data for a raw coal delivery quantity, for air flowing through, for the supplied cooling capacity, and for the exhaust gas during running operation is detected and conveyed to the computer. If an increased demand for resources is recognized, coverage is initiated via a changeover of excess resources available at other longwall operations or, if a reduced demand for resources is recognized, excess resources are rerouted to other longwall operations experiencing corresponding demand deficiencies.
Type:
Grant
Filed:
February 19, 2008
Date of Patent:
February 19, 2013
Assignee:
RAG Aktiengesselschaft
Inventors:
Martin Junker, Walter Hermülheim, Detlef Rother, Armin Friederich
Abstract: A method of controlling conveyance of the debris, extracted by working machines in underground mining operations, via conveyors and bunker units. The lowest available conveying capacity of the conveyors and buffer capacity of the bunker units are determined based on continuously detected actual data and are compared in a computer-aided control unit to at least one of current actual extraction output, anticipated target extraction output, and scheduled output extrapolated from past actual data. Upon detection of deviations, the control unit automatically effects a balancing of capacities between the conveyors and bunker units connected at an output side of each individual different working machine, taking into consideration their maximum conveying capacity and buffer capacity respectively, and/or controls the extraction output of the working machines taking into consideration respectively available conveying capacity of downstream conveyors and buffer capacity of the bunker units.