Abstract: A high resolution film scanner or telecine uses a microlithographic diffuser laminate (24) arranged adjacent the film. The diffuser diffuses a collimated light beam produced from a light source and the optics of a film scanner or telecine. This type of diffuser is inexpensive, yet produces a more uniformly distributed light intensity and aids in the reduction in visibility of surface imperfections such as scratches on the scanned film.
Abstract: A signal produced by a telecine suffers from losses and defects caused by differences in response to incident light between different areas of the screen area scanned. These differences may arise from burning of the screen, blemishes, dirt in the system, differences in grain size of phosphor particles, missing particles, and losses in the internal optical system of the machine. The invention divides the scanning area into a correction map and devises for each area a correction factor based on the response of that area to incident illumination. When a defect is detected, video data from an adjacent area is substituted. Correction factors are held in a look-up RAM and output to a multiplier where they are multiplied with video data. The video data input to the multiplier may be suppressed and a test pattern may be loaded into the multiplier.
Type:
Grant
Filed:
June 24, 1991
Date of Patent:
July 5, 1994
Assignee:
Rank Cintel Ltd.
Inventors:
Trevor M. Osborne, Terrence W. Mead, Stuart Hunt
Abstract: A high definition video signal can be obtained from photographic film by a non-real time scanning operation. The image area to be scanned is divided into blocks and a number of subscans equal to the number of pixels in each block are performed on the image area. In each scan, a different pixel in each block is scanned so that after n scans all pixels in the n pixel blocks have been scanned and a composite video signal can be formed. A plurality of high definition frames are stored at less than real time in a multi-frame store and then read out in real time to give a continuous high definition playback.
Abstract: In a flying spot telecine used to generate video signals by scanning a film, the scanning raster is adjustable angularly relative to the film being scanned. The output video signal hence represents the image on the film but angularly displaced relative to the orientation of the film itself. Using this method angular and rotational picture effects can be generated without the need for expensive computer memory or complex processing of picture information. The method can be applied to produce similar angular and rotational effects in a film writer. In such a system, unexposed film is repeatedly scanned by the flying spot scanner, the beam of which is modulated in turn by R, G and B video signals.
Abstract: The sensor 12 of a telecine projector is a charge coupled device and comprises a line of photo-sensitive elements 42 and a line of associated storge elements 44. An image form cinematographic film generates packets of charge in the elements 42 when focussed on the sensor. The charge packets may be transferred to the storage elements 44. The packets may then be shifted along the line of storage elements for reading (in serial form) by control circuitry 24. Reading takes place through an output port 26 at the end of the line.A switch 28 enables the two halves of the line to be disconnected, so that signals from only the lower half of the array can be read through the port 26, the signals from the upper half being discarded into a current sink. This reduces the clock frequency necessary to read out the signals in a set time, and enables the array to cope with normal, wide angle or anamorphic film stock.