Abstract: The present invention relates to a composition for preparing a microneedle, a soluble microneedle, and a microneedle percutaneous patch comprising the soluble microneedle. A soluble microneedle contained in a microneedle percutaneous patch of the present invention has a high drug loading capacity and excellent strength and thus may contain an effective amount of donepezil or a pharmaceutically acceptable salt thereof even with a small area of the microneedle. Accordingly, the present invention is economical and produces a lower level of skin irritation.
Type:
Grant
Filed:
May 16, 2018
Date of Patent:
August 29, 2023
Assignee:
Raphas Co., Ltd.
Inventors:
Tae Hyung Kim, Booyong Lee, Jung Dong Kim, Do Hyeon Jeong, Dongchul Shin, Yongyoun Hwang, Yun-Sun Nam, Joo Han Lee, Eun Jin An
Abstract: The present disclosure relates to a method for manufacturing a microneedle enabling product quality and efficiency in production to be improved by reducing the time needed for spotting a viscous material. The method for manufacturing a microneedle, according to the present disclosure, comprises the steps of spotting a viscous material on a plurality of spots on a film by supplying the viscous material to the upper surface of the film by means of a plurality of through-holes provided on an injection plate, elongating the viscous material spotted on the film; and coagulating the elongated viscous material.
Type:
Grant
Filed:
March 21, 2018
Date of Patent:
December 17, 2019
Assignee:
Raphas Co., Ltd.
Inventors:
Jung Dong Kim, Do Hyeon Jeong, Beom Joon Kim, Hong Kee Kim
Abstract: Provided is an electro-microneedle integrated body in which a dissolving microneedle and an electrode for electroporation are integrated into one, which enables a focused and efficient intracutaneous gene release for percutaneous gene delivery and intracellular gene delivery occurring in one in-situ treatment site The electro-microneedle integrated body according to the present invention includes an electrode for electroporation which is contacted with skin of a human body to apply an electric field pulse, including a base part and a plurality of electrode parts protruding from the base part, and a microneedle adhered to each electrode part and inserted into the skin of a human body, including a biocompatible and biodegradable viscous material and a genetic material, wherein the microneedle degrades within the skin, and the electric field pulse is applied through the electrode for electroporation in a site in which the microneedle is inserted.