Abstract: A new hardware architecture defines an indexing and encoding method for accelerating incoherent ray traversal. Accelerating multiple ray traversal may be accomplished by organizing the rays for minimal movement of data, hiding latency due to external memory access, and performing adaptive binning. Rays may be binned into coarse grain and fine grain spatial bins, independent of direction.
Abstract: A new hardware architecture defines an indexing and encoding method for accelerating incoherent ray traversal. Accelerating multiple ray traversal may be accomplished by organizing the rays for minimal movement of data, hiding latency due to external memory access, and performing adaptive binning. Rays may be binned into coarse grain and fine grain spatial bins, independent of direction.
Abstract: A new hardware architecture defines an indexing and encoding method for accelerating incoherent ray traversal. Accelerating multiple ray traversal may be accomplished by organizing the rays for minimal movement of data, hiding latency due to external memory access, and performing adaptive binning. Rays may be binned into coarse grain and fine grain spatial bins, independent of direction.
Abstract: A new hardware architecture defines an indexing and encoding method for accelerating incoherent ray traversal. Accelerating multiple ray traversal may be accomplished by organizing the rays for minimal movement of data, hiding latency due to external memory access, and performing adaptive binning. Rays may be binned into coarse grain and fine grain spatial bins, independent of direction.
Abstract: A new hardware architecture defines an indexing and encoding method for accelerating incoherent ray traversal. Accelerating multiple ray traversal may be accomplished by organizing the rays for minimal movement of data, hiding latency due to external memory access, and performing adaptive binning. Rays may be binned into coarse grain and fine grain spatial bins, independent of direction.
Abstract: A new hardware architecture defines an indexing and encoding method for accelerating incoherent ray traversal. Accelerating multiple ray traversal may be accomplished by organizing the rays for minimal movement of data, hiding latency due to external memory access, and performing adaptive binning Rays may be binned into coarse grain and fine grain spatial bins, independent of direction.
Abstract: A new hardware architecture defines an indexing and encoding method for accelerating incoherent ray traversal. Accelerating multiple ray traversal may be accomplished by organizing the rays for minimal movement of data, hiding latency due to external memory access, and performing adaptive binning. Rays may be binned into coarse grain and fine grain spatial bins, independent of direction.
Abstract: A new hardware architecture defines an indexing and encoding method for accelerating incoherent ray traversal. Accelerating multiple ray traversal may be accomplished by organizing the rays for minimal movement of data, hiding latency due to external memory access, and performing adaptive binning. Rays may be binned into coarse grain and fine grain spatial bins, independent of direction.
Abstract: A new hardware architecture defines an indexing and encoding method for accelerating incoherent ray traversal. Accelerating multiple ray traversal may be accomplished by organizing the rays for minimal movement of data, hiding latency due to external memory access, and performing adaptive binning. Rays may be binned into coarse grain and fine grain spatial bins, independent of direction.
Abstract: A new hardware architecture defines an indexing and encoding method for accelerating incoherent ray traversal. Accelerating multiple ray traversal may be accomplished by organizing the rays for minimal movement of data, hiding latency due to external memory access, and performing adaptive binning. Rays may be binned into coarse grain and fine grain spatial bins, independent of direction.
Abstract: A new hardware architecture defines an indexing and encoding method for accelerating incoherent ray traversal. Accelerating multiple ray traversal may be accomplished by organizing the rays for minimal movement of data, hiding latency due to external memory access, and performing adaptive binning. Rays may be binned into coarse grain and fine grain spatial bins, independent of direction.
Abstract: A new hardware architecture defines an indexing and encoding method for accelerating incoherent ray traversal. Accelerating multiple ray traversal may be accomplished by organizing the rays for minimal movement of data, hiding latency due to external memory access, and performing adaptive binning. Rays may be binned into coarse grain and fine grain spatial bins, independent of direction.