Patents Assigned to Raytheon Sarcos, LLC
  • Patent number: 8026447
    Abstract: Devices and methods for electrical interconnection for microelectronic circuits are disclosed. One method of electrical interconnection includes forming a bundle of microfilaments, wherein at least two of the microfilaments include electrically conductive portions extending along their lengths. The method can also include bonding the microfilaments to corresponding bond pads of a microelectronic circuit substrate to form electrical connections between the electrically conductive portions and the corresponding bond pads. A microelectronic circuit can include a bundle of microfilaments bonded to corresponding bond pads to make electrical connection between corresponding bonds pads and electrically-conductive portions of the microfilaments.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: September 27, 2011
    Assignee: Raytheon Sarcos, LLC
    Inventors: Stephen C. Jacobsen, David P. Marceau, Shayne M. Zurn, David T. Markus
  • Publication number: 20110162451
    Abstract: Methods and devices for a miniature, ultra-low power impact recorder for detecting, quantifying and recording the energy of an explosive blast or ballistic projectile impact. In one embodiment, the impact recorder can included a sensor comprised of an array of electromechanical resonators that is sensitive to the vibrations produced in selected, discrete frequency ranges that approximate the spectral signature characteristics of the shockwave resulting from the ballistic impact event, even after traveling through impacted material or body tissues.
    Type: Application
    Filed: May 7, 2008
    Publication date: July 7, 2011
    Applicant: Raytheon Sarcos, LLC
    Inventors: Tomasz J. Petelenz, Stephen C. Jacobsen
  • Patent number: 7881578
    Abstract: Techniques for ultra-high density connection are disclosed. In one embodiment, an ultra-high density connector includes a bundle of substantially parallel elongate cylindrical elements, where each cylindrical element is substantially in contact with at least one adjacent cylindrical element. Ends of the elongate cylindrical elements are disposed differentially with respect to each other to define a three-dimensional interdigitating mating surface. At least one of the elongate cylindrical elements has an electrically conductive contact positioned to tangentially engage a corresponding electrical contact of a mating connector.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: February 1, 2011
    Assignee: Raytheon Sarcos, LLC
    Inventors: Stephen C. Jacobsen, David P. Marceau, Shayne M. Zurn, David T. Markus
  • Patent number: 7845440
    Abstract: A serpentine robotic crawler capable of multiple movement moves is disclosed. The serpentine robotic crawler includes a plurality of frame units, coupled together by at least one actuated linkage. Each frame unit includes a continuous track, enabling forward movement of the serpentine robotic crawler. The at least one actuated linkage has at least 7 degrees of movement freedom, enabling the serpentine robotic crawler to adopt a variety of poses.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: December 7, 2010
    Assignee: Raytheon Sarcos, LLC
    Inventor: Stephen C. Jacobsen
  • Patent number: 7779863
    Abstract: The present invention describes, generally, a method and system for controlling the dynamics of an actuatable load functioning or operable within a servo or servo-type system, wherein the dynamics of the load are controlled by way of a unique asymmetric pressure control valve configured to provide intrinsic pressure regulation. The asymmetric pressure control valve, which may be referred to as a dynamic pressure regulator because of its capabilities, utilizes different sized free floating spools that are physically independent of one another and freely supported in interior cavities of respective corresponding different sized valving components that make up the valve body to regulate the pressures acting within the overall system between the control or pilot pressure and the load or load pressure.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: August 24, 2010
    Assignee: Raytheon Sarcos, LLC
    Inventors: Stephen C. Jacobsen, Shane Olsen, Michael Morrison
  • Patent number: 7680377
    Abstract: Techniques for ultra-high density connection are disclosed. In one embodiment, an ultra-high density connector includes a bundle of substantially parallel elongate cylindrical elements, where each cylindrical element is substantially in contact with at least one adjacent cylindrical element. Ends of the elongate cylindrical elements are disposed differentially with respect to each other to define a three-dimensional interdigitating mating surface. At least one of the elongate cylindrical elements has an electrically conductive contact positioned to tangentially engage a corresponding electrical contact of a mating connector.
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: March 16, 2010
    Assignee: Raytheon Sarcos, LLC
    Inventors: Stephen C. Jacobsen, David P. Marceau, Shayne M. Zurn, David T. Markus
  • Patent number: 7626123
    Abstract: Devices and methods for electrical interconnection for microelectronic circuits are disclosed. One method of electrical interconnection includes forming a bundle of microfilaments, wherein at least two of the microfilaments include electrically conductive portions extending along their lengths. The method can also include bonding the microfilaments to corresponding bond pads of a microelectronic circuit substrate to form electrical connections between the electrically conductive portions and the corresponding bond pads. A microelectronic circuit can include a bundle of microfilaments bonded to corresponding bond pads to make electrical connection between corresponding bonds pads and electrically-conductive portions of the microfilaments.
    Type: Grant
    Filed: December 11, 2006
    Date of Patent: December 1, 2009
    Assignee: Raytheon Sarcos, LLC
    Inventors: Stephen C. Jacobsen, David P. Marceau, Shayne M. Zurn, David T. Markus
  • Patent number: 7509905
    Abstract: The present invention describes, generally, a method and system for controlling the dynamics of an actuatable load functioning or operable within a servo or servo-type system, wherein the dynamics of the load are controlled by way of a unique pressure control valve configured to provide intrinsic pressure regulation. The pressure control valve, which may be referred to as a dynamic pressure regulator because of its capabilities, utilizes dual spools that are physically independent of one another and freely supported in the valve body to regulate the pressures acting within the overall system between the control or pilot pressure and the load or load pressure.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: March 31, 2009
    Assignee: Raytheon Sarcos, LLC
    Inventors: Stephen C. Jacobsen, Shane Olsen, Michael Morrison
  • Publication number: 20080281468
    Abstract: Varying modes of movement of a robotic crawler are provided by using a variable mapping from high-level (operator input) primitives into low-level primitives. The mapping is a function of environmental data sensed by the robotic crawler enabling the movement mode to be adapted to the environment.
    Type: Application
    Filed: May 8, 2008
    Publication date: November 13, 2008
    Applicant: RAYTHEON SARCOS, LLC
    Inventors: Stephen C. Jacobsen, Marc Olivier, Ralph W. Pensel, Christopher R. Hirschi
  • Patent number: 7438277
    Abstract: The present invention features a sleeve valve comprising an elongate body having an outer surface and including a lumen for receiving a fluid and an associated fluid pressure therein and for defining a flow path of the fluid; at least one fluid flow port formed through the outer surface that is in fluid connection with the lumen; and a sleeve slidably disposed about the outer surface of the body and configured to displace across the fluid flow port to precisely regulate fluid emission through the fluid flow port. The sleeve and elongate body are operably related in a manner so as to provide some degree of fluid force compensation, such that the forces necessary to displace the sleeve across the fluid flow port are substantially unaffected by the fluid pressures acting within the body and at the fluid flow port. In other words, the fluid pressures do not substantially contribute to the resistance in the sleeve during actuation.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: October 21, 2008
    Assignee: Raytheon Sarcos, LLC
    Inventors: Stephen C. Jacobsen, Shane Olsen, Michael Morrison
  • Patent number: 7363887
    Abstract: The present invention features a rapid fire rapid response power conversion system comprising (a) a chamber having at least one fluid port configured to supply combustible fluid to the chamber, and an out-take port; (b) a compressor for supplying compressed combustible fuel to the chamber at a variable pressure to at least partially facilitate combustion therein; (c) a controller for initiating and controlling a combustion of the combustible fluid in a combustion portion of the chamber to generate energy; (d) a rapid response component in fluid communication with the chamber and situated adjacent the combustion portion of the chamber, wherein the rapid response component is configured to draw an optimized portion of the energy generated from the combustion and to convert this optimized portion of energy into kinetic energy; and (e) a dynamic mass structure situated between the rapid response component and an energy transfer component and allowing the rapid response component and the energy transfer component
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: April 29, 2008
    Assignee: Raytheon Sarcos, LLC
    Inventors: Stephen C. Jacobsen, Marc Olivier
  • Patent number: 7333699
    Abstract: Techniques for ultra-high density connection are disclosed. In one embodiment, an ultra-high density connector includes a bundle of substantially parallel elongate cylindrical elements, where each cylindrical element is substantially in contact with at least one adjacent cylindrical element. Ends of the elongate cylindrical elements are disposed differentially with respect to each other to define a three-dimensional interdigitating mating surface. At least one of the elongate cylindrical elements has an electrically conductive contact positioned to tangentially engage a corresponding electrical contact of a mating connector.
    Type: Grant
    Filed: December 11, 2006
    Date of Patent: February 19, 2008
    Assignee: Raytheon Sarcos, LLC
    Inventors: Stephen C. Jacobsen, David P. Marceau, Shayne M. Zurn