Patents Assigned to Razmodics LLC
  • Patent number: 11931484
    Abstract: A bioabsorbable composite stent structure, comprising bioabsorbable polymeric ring structures which retain a molecular weight and mechanical strength of a starting substrate and one or more interconnecting struts which extend between and couple adjacent ring structures. The ring structures can have a formed first diameter and being radially compressible to a smaller second diameter and re-expandable to the first diameter. The ring structures can comprise a base polymeric layer. The interconnecting struts can be formed from a polymer blend or co-polymer of poly-L-lactide (PLLA) and an elastomeric polymer. The interconnecting struts each can have a width that is less than a circumference of one of the ring structures. The adjacent ring structures can be axially and rotationally movable relative to one another via the interconnecting struts. The interconnecting struts can also be bioabsorbable.
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: March 19, 2024
    Assignee: Razmodics LLC
    Inventors: Kamal Ramzipoor, Richard J. Saunders
  • Publication number: 20230190500
    Abstract: Post deployment radial force recovery of biodegradable scaffolds are described where a high molecular weight polymer may be formed into a high molecular weight scaffold by solution casting into a tubular substrate such that the scaffold retains its mechanical properties through processing. The tubular substrate is laser cut and subsequently crimped onto a catheter for deployment into a body lumen. The polymeric scaffold may retain its mechanical properties and result in increased radial strength post-deployment in a saline environment, e.g., within a body lumen. This scaffold enhancement may be attributable at least in part to entanglement of high molecular weight polymer chains as one factor that effects radial force recovery and also to the design or geometry of the scaffold as another factor that effects radial force recovery after deployment.
    Type: Application
    Filed: February 22, 2023
    Publication date: June 22, 2023
    Applicant: Razmodics LLC
    Inventors: Kamal RAMZIPOOR, Chang Y. LEE
  • Patent number: 11628077
    Abstract: Post deployment radial force recovery of biodegradable scaffolds are described where a high molecular weight polymer may be formed into a high molecular weight scaffold by solution casting into a tubular substrate such that the scaffold retains its mechanical properties through processing. The tubular substrate is laser cut and subsequently crimped onto a catheter for deployment into a body lumen. The polymeric scaffold may retain its mechanical properties and result in increased radial strength post-deployment in a saline environment, e.g., within a body lumen. This scaffold enhancement may be attributable at least in part to entanglement of high molecular weight polymer chains as one factor that effects radial force recovery and also to the design or geometry of the scaffold as another factor that effects radial force recovery after deployment.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: April 18, 2023
    Assignee: Razmodics LLC
    Inventors: Kamal Ramzipoor, Chang Y. Lee
  • Publication number: 20210128796
    Abstract: A bioabsorbable composite stent structure, comprising bioabsorbable polymeric ring structures which retain a molecular weight and mechanical strength of a starting substrate and one or more interconnecting struts which extend between and couple adjacent ring structures. The ring structures can have a formed first diameter and being radially compressible to a smaller second diameter and re-expandable to the first diameter. The ring structures can comprise a base polymeric layer. The interconnecting struts can be formed from a polymer blend or co-polymer of poly-L-lactide (PLLA) and an elastomeric polymer. The interconnecting struts each can have a width that is less than a circumference of one of the ring structures. The adjacent ring structures can be axially and rotationally movable relative to one another via the interconnecting struts. The interconnecting struts can also be bioabsorbable.
    Type: Application
    Filed: January 15, 2021
    Publication date: May 6, 2021
    Applicant: Razmodics LLC
    Inventors: Kamal RAMZIPOOR, Richard J. SAUNDERS
  • Patent number: 10898620
    Abstract: A bioabsorbable composite stent structure, comprising bioabsorbable polymeric ring structures which retain a molecular weight and mechanical strength of a starting substrate and one or more interconnecting struts which extend between and couple adjacent ring structures. The ring structures can have a formed first diameter and being radially compressible to a smaller second diameter and re-expandable to the first diameter. The ring structures can comprise a base polymeric layer. The interconnecting struts can be formed from a polymer blend or co-polymer of poly-L-lactide (PLLA) and an elastomeric polymer. The interconnecting struts each can have a width that is less than a circumference of one of the ring structures. The adjacent ring structures can be axially and rotationally movable relative to one another via the interconnecting struts. The interconnecting struts can also be bioabsorbable.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: January 26, 2021
    Assignee: Razmodics LLC
    Inventors: Kamal Ramzipoor, Richard J. Saunders
  • Patent number: 10893960
    Abstract: Tubular casting processes, such as dip-coating, may be used to form substrates from polymeric solutions which may be used to fabricate implantable devices such as stents. The polymeric substrates may have multiple layers which retain the inherent properties of their starting materials and which are sufficiently ductile to prevent brittle fracture. Parameters such as the number of times the mandrel is immersed, the duration of time of each immersion within the solution, as well as the delay time between each immersion or the drying or curing time between dips and withdrawal rates of the mandrel from the solution may each be controlled to result in the desired mechanical characteristics. Additional post-processing may also be utilized to further increase strength of the substrate or to alter its shape.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: January 19, 2021
    Assignee: Razmodics LLC
    Inventors: Kamal Ramzipoor, Alfred N. K. Chia, Liwei Wang