Patents Assigned to REALTIME ROBOTICS, INC.
  • Patent number: 11964393
    Abstract: A robot control system determines which of a number of discretizations to use to generate discretized representations of robot swept volumes and to generate discretized representations of the environment in which the robot will operate. Obstacle voxels (or boxes) representing the environment and obstacles therein are streamed into the processor and stored in on-chip environment memory. At runtime, the robot control system may dynamically switch between multiple motion planning graphs stored in off-chip or on-chip memory. The dynamically switching between multiple motion planning graphs at runtime enables the robot to perform motion planning at a relatively low cost as characteristics of the robot itself change. Various aspects of such robot motion planning are implemented in particular systems and methods that facilitate motion planning of the robot for various environments and tasks.
    Type: Grant
    Filed: July 12, 2023
    Date of Patent: April 23, 2024
    Assignee: REALTIME ROBOTICS, INC.
    Inventors: Daniel Sorin, George Konidaris, Sean Murray, William Floyd-Jones, Peter Howard, Xianchao Long
  • Patent number: 11745346
    Abstract: A robot control system determines which of a number of discretizations to use to generate discretized representations of robot swept volumes and to generate discretized representations of the environment in which the robot will operate. Obstacle voxels (or boxes) representing the environment and obstacles therein are streamed into the processor and stored in on-chip environment memory. At runtime, the robot control system may dynamically switch between multiple motion planning graphs stored in off-chip or on-chip memory. The dynamically switching between multiple motion planning graphs at runtime enables the robot to perform motion planning at a relatively low cost as characteristics of the robot itself change.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: September 5, 2023
    Assignee: REALTIME ROBOTICS, INC.
    Inventors: Daniel Sorin, George Konidaris, Sean Murray, William Floyd-Jones
  • Patent number: 11738457
    Abstract: A robot control system determines which of a number of discretizations to use to generate discretized representations of robot swept volumes and to generate discretized representations of the environment in which the robot will operate. Obstacle voxels (or boxes) representing the environment and obstacles therein are streamed into the processor and stored in on-chip environment memory. At runtime, the robot control system may dynamically switch between multiple motion planning graphs stored in off-chip or on-chip memory. The dynamically switching between multiple motion planning graphs at runtime enables the robot to perform motion planning at a relatively low cost as characteristics of the robot itself change. Various aspects of such robot motion planning are implemented in particular systems and methods that facilitate motion planning of the robot for various environments and tasks.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: August 29, 2023
    Assignee: REALTIME ROBOTICS, INC.
    Inventors: Daniel Sorin, George Konidaris, Sean Murray, William Floyd-Jones, Peter Howard, Xianchao Long
  • Patent number: 11673265
    Abstract: Faster, less computational intense, and more robust techniques to optimize velocity of robots or portions thereof without violating constraints on acceleration and jerk (derivative of acceleration with respect to time) are described. A nonlinear problem of optimizing velocity without violating acceleration constraints is linearized, and produces acceleration constrained velocity estimates. A nonlinear problem of optimizing velocity without violating jerk constraints in linearized, and produces jerk constrained velocity estimates, and may be feed by the acceleration constrained velocity estimates. Configuration and timing may be generated and provided, e.g., as vectors, to control operation of a robot, robotic appendage or other structure.
    Type: Grant
    Filed: August 21, 2020
    Date of Patent: June 13, 2023
    Assignee: REALTIME ROBOTICS, INC.
    Inventor: Christopher Barrett Ames
  • Patent number: 11634126
    Abstract: A motion planner performs motion planning with collision assessment, using a motion planning lattice that represents configuration states of a primary agent (e.g., autonomous vehicle) as nodes and transitions between states as edges. The system may assign cost values to edges, the cost values representing probability or likelihood of collision for the corresponding transition. The cost values may additionally or alternatively represent a severity of collision, for example generated via a parametric function with two or more parameters and one or more weights. A primary agent and/or dynamic obstacles may be represented as respective oriented bounding boxes. Some obstacles (e.g., road markings, edge of road) may be represented as curves.
    Type: Grant
    Filed: May 26, 2020
    Date of Patent: April 25, 2023
    Assignee: REALTIME ROBOTICS, INC.
    Inventors: William Floyd-Jones, Bryce Willey, George Konidaris, Xianchao Long
  • Patent number: 11623346
    Abstract: Solutions for multi-robot configurations are co-optimized, to at least some degree, across a set of non-homogenous parameters based on a given set of tasks to be performed by robots in a multi-robot operational environment. Non-homogenous parameters may include two or more of: the respective base position and orientation of the robots, an allocation of tasks to respective robots, respective target sequences and/or trajectories for the robots. Such may be executed pre-runtime. Output may include for each robot: workcell layout, an ordered list or vector of targets, optionally dwell time durations at respective targets, and paths or trajectories between each pair of consecutive targets. Output may provide a complete, executable, solution to the problem, which in the absence of variability in timing, can be used to control the robots without any modification. A genetic algorithm, e.g., Differential Evolution, may optionally be used in generating a population of candidate solutions.
    Type: Grant
    Filed: January 20, 2021
    Date of Patent: April 11, 2023
    Assignee: REALTIME ROBOTICS, INC.
    Inventors: Luca Colasanto, Sean Murray
  • Patent number: 11235465
    Abstract: A robot control system determines which of a number of discretizations to use to generate discretized representations of robot swept volumes and to generate discretized representations of the environment in which the robot will operate. Obstacle voxels (or boxes) representing the environment and obstacles therein are streamed into the processor and stored in on-chip environment memory. At runtime, the robot control system may dynamically switch between multiple motion planning graphs stored in off-chip or on-chip memory. The dynamically switching between multiple motion planning graphs at runtime enables the robot to perform motion planning at a relatively low cost as characteristics of the robot itself change.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: February 1, 2022
    Assignee: REALTIME ROBOTICS, INC.
    Inventors: Daniel Sorin, George Konidaris, Sean Murray, William Floyd-Jones