Patents Assigned to Rebellion Photonics, Inc.
  • Patent number: 11287409
    Abstract: Various embodiments disclosed herein describe an infrared (IR) imaging system for detecting a gas. The imaging system can include an optical filter that selectively passes light having a wavelength in a range of 1585 nm to 1595 nm while attenuating light at wavelengths above 1600 nm and below 1580 nm. The system can include an optical detector array sensitive to light having a wavelength of 1590 that is positioned rear of the optical filter.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: March 29, 2022
    Assignee: REBELLION PHOTONICS, INC.
    Inventors: Robert Timothy Kester, Nathan Adrian Hagen
  • Patent number: 11290662
    Abstract: In one embodiment, an infrared (IR) imaging system for determining a concentration of a target species in an object is disclosed. The imaging system can include an optical system including an optical focal plane array (FPA) unit. The optical system can have components defining at least two optical channels thereof, said at least two optical channels being spatially and spectrally different from one another. Each of the at least two optical channels can be positioned to transfer IR radiation incident on the optical system towards the optical FPA. The system can include a processing unit containing a processor that can be configured to acquire multispectral optical data representing said target species from the IR radiation received at the optical FPA. Said optical system and said processing unit can be contained together in a data acquisition and processing module configured to be worn or carried by a person.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: March 29, 2022
    Assignee: REBELLION PHOTONICS, INC.
    Inventors: Robert Timothy Kester, Nathan Adrian Hagen
  • Patent number: 11044423
    Abstract: In one embodiment, an infrared (IR) imaging system for determining a concentration of a target species in an object is disclosed. The imaging system can include an optical system including an optical focal plane array (FPA) unit. The optical system can have components defining at least two optical channels thereof, said at least two optical channels being spatially and spectrally different from one another. Each of the at least two optical channels can be positioned to transfer IR radiation incident on the optical system towards the optical FPA. The system can include a processing unit containing a processor that can be configured to acquire multispectral optical data representing said target species from the IR radiation received at the optical FPA. Said optical system and said processing unit can be contained together in a data acquisition and processing module configured to be worn or carried by a person.
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: June 22, 2021
    Assignee: REBELLION PHOTONICS, INC.
    Inventor: Robert Timothy Kester
  • Patent number: 10989597
    Abstract: A divided-aperture infrared spectral imaging (DAISI) system that is structured to provide identification of target chemical content in a single imaging shot based on spectrally-multiplexed operation. The system is devoid of spectral scanning acquisition of infrared (IR) spectral signatures of target content with an IR detector and does not require content.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: April 27, 2021
    Assignee: REBELLION PHOTONICS, INC.
    Inventors: Robert T. Kester, Nathan A. Hagen
  • Patent number: 10955355
    Abstract: A system for monitoring a petrochemical installation is disclosed. The system can include an optical imaging system comprising an array of optical detectors. The system can comprise processing electronics configured to process image data detected by the optical imaging system. The processing electronics can be configured to detect a target species based at least in part on the processed image data. The processing electronics can further be configured to, based on a detected amount of the target species, transmit an alarm notification to an external computing device over a communications network indicating that the target species has been detected at the petrochemical installation.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: March 23, 2021
    Assignee: REBELLION PHOTONICS, INC.
    Inventors: Robert Timothy Kester, Margarita Sergeyevna Odintsova
  • Patent number: 10948404
    Abstract: A spectral imaging system configured to obtain spectral measurements in a plurality of spectral regions is described herein. The spectral imaging system comprises at least one optical detecting unit having a spectral response corresponding to a plurality of absorption peaks of a target chemical species. In an embodiment, the optical detecting unit may comprise an optical detector array, and one or more optical filters configured to selectively pass light in a spectral range, wherein a convolution of the responsivity of the optical detector array and the transmission spectrum of the one or more optical filters has a first peak in mid-wave infrared spectral region between 3-4 microns corresponding to a first absorption peak of methane and a second peak in a long-wave infrared spectral region between 6-8 microns corresponding to a second absorption peak of methane.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: March 16, 2021
    Assignee: REBELLION PHOTONICS, INC.
    Inventors: Robert Timothy Kester, Ohad Israel Balila
  • Patent number: 10914632
    Abstract: Various embodiments disclosed herein describe a divided-aperture infrared spectral imaging (DAISI) system that is adapted to acquire multiple IR images of a scene with a single-shot (also referred to as a snapshot). The plurality of acquired images having different wavelength compositions that are obtained generally simultaneously. The system includes at least two optical channels that are spatially and spectrally different from one another. Each of the at least two optical channels are configured to transfer IR radiation incident on the optical system towards an optical FPA unit comprising at least two detector arrays disposed in the focal plane of two corresponding focusing lenses. The system further comprises at least one temperature reference source or surface that is used to dynamically calibrate the two detector arrays and compensate for a temperature difference between the two detector arrays.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: February 9, 2021
    Assignee: REBELLION PHOTONICS, INC.
    Inventors: Robert Timothy Kester, Nathan Adrian Hagen
  • Patent number: 10914639
    Abstract: Various embodiments disclosed herein describe a divided-aperture infrared spectral imaging (DAISI) system that is adapted to acquire multiple IR images of a scene with a single-shot (also referred to as a snapshot). The plurality of acquired images having different wavelength compositions that are obtained generally simultaneously. The system includes at least two optical channels that are spatially and spectrally different from one another. Each of the at least two optical channels are configured to transfer IR radiation incident on the optical system towards an optical FPA unit comprising at least two detector arrays disposed in the focal plane of two corresponding focusing lenses. The system further comprises at least one temperature reference source or surface that is used to dynamically calibrate the two detector arrays and compensate for a temperature difference between the two detector arrays.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: February 9, 2021
    Assignee: REBELLION PHOTONICS, INC.
    Inventors: Robert Timothy Kester, Nathan Adrian Hagen
  • Patent number: 10893220
    Abstract: Various embodiments disclosed herein describe a divided-aperture infrared spectral imaging (DAISI) system that is adapted to acquire multiple IR images of a scene with a single-shot (also referred to as a snapshot). The plurality of acquired images having different wavelength compositions that are obtained generally simultaneously. The system includes at least two optical channels that are spatially and spectrally different from one another. Each of the at least two optical channels are configured to transfer IR radiation incident on the optical system towards an optical FPA unit comprising at least two detector arrays. One of the at least two detector arrays comprises a cooled mid-wavelength infra-red FPA. The system further comprises at least one temperature reference source or surface that is used to dynamically calibrate the two detector arrays and compensate for a temperature difference between the two detector arrays.
    Type: Grant
    Filed: January 24, 2019
    Date of Patent: January 12, 2021
    Assignee: REBELLION PHOTONICS, INC.
    Inventors: Robert Timothy Kester, Nathan Adrian Hagen
  • Patent number: 10845302
    Abstract: An infrared (IR) imaging system for determining a concentration of a target species in an object is disclosed. The imaging system can include an optical system including a focal plane array (FPA) unit behind an optical window. The optical system can have components defining at least two optical channels thereof, said at least two optical channels being spatially and spectrally different from one another. Each of the at least two optical channels can be positioned to transfer IR radiation incident on the optical system towards the optical FPA. The system can include a processing unit containing a processor that can be configured to acquire multispectral optical data representing said target species from the IR radiation received at the optical FPA. One or more of the optical channels may be used in detecting objects on or near the optical window, to avoid false detections of said target species.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: November 24, 2020
    Assignee: REBELLION PHOTONICS, INC.
    Inventors: Ryan Mallery, Ohad Israel Balila, Robert Timothy Kester
  • Patent number: 10648960
    Abstract: Various embodiments disclosed herein describe an infrared (IR) imaging system for detecting a gas. The imaging system can include an optical filter that selectively passes light having a wavelength in a range of 1585 nm to 1595 nm while attenuating light at wavelengths above 1600 nm and below 1580 nm. The system can include an optical detector array sensitive to light having a wavelength of 1590 that is positioned rear of the optical filter.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: May 12, 2020
    Assignee: REBELLION PHOTONICS, INC.
    Inventors: Robert Timothy Kester, Nathan Adrian Hagen
  • Patent number: 10605725
    Abstract: An infrared (IR) imaging system for determining a concentration of a target species in an object is disclosed. The imaging system can include an optical system including a focal plane array (FPA) unit behind an optical window. The optical system can have components defining at least two optical channels thereof, said at least two optical channels being spatially and spectrally different from one another. Each of the at least two optical channels can be positioned to transfer IR radiation incident on the optical system towards the optical FPA. The system can include a processing unit containing a processor that can be configured to acquire multispectral optical data representing said target species from the IR radiation received at the optical FPA. One or more of the optical channels may be used in detecting objects on or near the optical window, to avoid false detections of said target species.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: March 31, 2020
    Assignee: REBELLION PHOTONICS, INC.
    Inventors: Ryan Mallery, Ohad Israel Balila, Robert Timothy Kester
  • Patent number: 10458905
    Abstract: An instrument and method for analyzing a gas leak. The instrument can obtain a time series of spectra from a scene. The instrument can compare spectra from different times to determine a property of a gas cloud within the scene. The instrument can estimate the column density of the gas cloud at one or more locations within the scene. The instrument can estimate the total quantity of gas in the cloud. The instrument can estimate the amount of gas which has left the field of view of the instrument. The instrument can also estimate the amount of gas in the cloud which has dropped below the sensitivity limit of the instrument.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: October 29, 2019
    Assignee: Rebellion Photonics, Inc.
    Inventors: Robert Timothy Kester, Nathan Adrian Hagen, Ryan Mallery
  • Patent number: 10444070
    Abstract: Various embodiments disclosed herein describe a divided-aperture infrared spectral imaging (DAISI) system that is adapted to acquire multiple IR images of a scene with a single-shot (also referred to as a snapshot). The plurality of acquired images having different wavelength compositions that are obtained generally simultaneously. The system includes at least two optical channels that are spatially and spectrally different from one another. Each of the at least two optical channels are configured to transfer IR radiation incident on the optical system towards an optical FPA unit comprising at least two detector arrays disposed in the focal plane of two corresponding focusing lenses. The system further comprises at least one temperature reference source or surface that is used to dynamically calibrate the two detector arrays and compensate for a temperature difference between the two detector arrays.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: October 15, 2019
    Assignee: Rebellion Photonics, Inc.
    Inventors: Robert Timothy Kester, Nathan Adrian Hagen
  • Patent number: 10375327
    Abstract: In one embodiment, an infrared (IR) imaging system for determining a concentration of a target species in an object is disclosed. The imaging system can include an optical system including an optical focal plane array (FPA) unit. The optical system can have components defining at least two optical channels thereof, said at least two optical channels being spatially and spectrally different from one another. Each of the at least two optical channels can be positioned to transfer IR radiation incident on the optical system towards the optical FPA. The system can include a processing unit containing a processor that can be configured to acquire multispectral optical data representing said target species from the IR radiation received at the optical FPA. Said optical system and said processing unit can be contained together in a data acquisition and processing module configured to be worn or carried by a person.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: August 6, 2019
    Assignee: Rebellion Photonics, Inc.
    Inventor: Robert Timothy Kester
  • Patent number: 10267686
    Abstract: Various embodiments disclosed herein describe a divided-aperture infrared spectral imaging (DAISI) system that is adapted to acquire multiple IR images of a scene with a single-shot (also referred to as a snapshot). The plurality of acquired images having different wavelength compositions that are obtained generally simultaneously. The system includes at least two optical channels that are spatially and spectrally different from one another. Each of the at least two optical channels are configured to transfer IR radiation incident on the optical system towards an optical FPA unit comprising at least two detector arrays disposed in the focal plane of two corresponding focusing lenses. The system further comprises at least one temperature reference source or surface that is used to dynamically calibrate the two detector arrays and compensate for a temperature difference between the two detector arrays.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: April 23, 2019
    Assignee: REBELLION PHOTONICS, INC.
    Inventors: Robert Timothy Kester, Nathan Adrian Hagen
  • Patent number: 10254166
    Abstract: A divided-aperture infrared spectral imaging (DAISI) system that is structured to provide identification of target chemical content in a single imaging shot based on spectrally-multiplexed operation. The system is devoid of spectral scanning acquisition of infrared (IR) spectral signatures of target content with an IR detector and does not require content.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: April 9, 2019
    Assignee: Rebellion Photonics, Inc.
    Inventors: Robert T. Kester, Nathan A. Hagen
  • Patent number: 10113914
    Abstract: Various embodiments disclosed herein describe a divided-aperture infrared spectral imaging (DAISI) system that is adapted to acquire multiple IR images of a scene with a single-shot (also referred to as a snapshot). The plurality of acquired images having different wavelength compositions that are obtained generally simultaneously. The system includes at least two optical channels that are spatially and spectrally different from one another. Each of the at least two optical channels are configured to transfer IR radiation incident on the optical system towards an optical FPA unit comprising at least two detector arrays disposed in the focal plane of two corresponding focusing lenses. The system further comprises at least one temperature reference source or surface that is used to dynamically calibrate the two detector arrays and compensate for a temperature difference between the two detector arrays.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: October 30, 2018
    Assignee: REBELLION PHOTONICS, INC.
    Inventors: Robert Timothy Kester, Nathan Adrian Hagen
  • Patent number: 10084975
    Abstract: In one embodiment, an infrared (IR) imaging system for determining a concentration of a target species in an object is disclosed. The imaging system can include an optical system including an optical focal plane array (FPA) unit. The optical system can have components defining at least two optical channels thereof, said at least two optical channels being spatially and spectrally different from one another. Each of the at least two optical channels can be positioned to transfer IR radiation incident on the optical system towards the optical FPA. The system can include a processing unit containing a processor that can be configured to acquire multispectral optical data representing said target species from the IR radiation received at the optical FPA. Said optical system and said processing unit can be contained together in a data acquisition and processing module configured to be worn or carried by a person.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: September 25, 2018
    Assignee: Rebellion Photonics, Inc.
    Inventors: Robert Timothy Kester, Nathan Adrian Hagen
  • Patent number: 9756263
    Abstract: In one embodiment, an infrared (IR) imaging system for determining a concentration of a target species in an object is disclosed. The imaging system can include an optical system including an optical focal plane array (FPA) unit. The optical system can have components defining at least two optical channels thereof, said at least two optical channels being spatially and spectrally different from one another. Each of the at least two optical channels can be positioned to transfer IR radiation incident on the optical system towards the optical FPA. The system can include a processing unit containing a processor that can be configured to acquire multispectral optical data representing said target species from the IR radiation received at the optical FPA. Said optical system and said processing unit can be contained together in a data acquisition and processing module configured to be worn or carried by a person.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: September 5, 2017
    Assignee: REBELLION PHOTONICS, INC.
    Inventors: Robert Timothy Kester, Nathan Adrian Hagen