Patents Assigned to Red Creamery, LLC
  • Patent number: 11933967
    Abstract: A distally-actuated scanning mirror includes: a mirror block with reflective surface on one side; torsional hinges with proximal ends rigidly attached to the mirror block, and with distal ends attached to flexural structures configured to transform translational motion of the piezoelectric elements into rotational motion of the distal ends of the hinges; and piezoelectric elements providing such translational motion. The distally-actuated scanning mirror also includes flexural structures made of separate flexures attached to the opposite surfaces of the distal ends of the hinges, which flexural structures have defined thinned-down flexural points. Portions of the distally-actuated scanning mirror may be 3D printed and/or fabricated by silicon MEMS technology. The mirror is fabricated from a Silicon-on-Insulator wafer, having a relatively thick (e.g., 380 um) handle layer, and a relatively thin e.g., 50 um), where photolithography with backside-alignment allows separate patterning of these two layers.
    Type: Grant
    Filed: October 12, 2022
    Date of Patent: March 19, 2024
    Assignee: RED Creamery, LLC
    Inventors: Ron Goldman, Dmitry Yavid, Igor Paprotny, Christopher Silvio Cosentino
  • Publication number: 20230143755
    Abstract: A laser radar includes: a laser, an optical transmission system, a 1-dimensional array of photo-detectors, an optical reception system, and an electronic control system. The laser emits a wavelength of light, and the optical transmission system shapes the light into a beam, and scans the beam along a fan of transmission light paths toward a target. The photo-detectors are capable of time-of-arrival measurements and are sensitive to the wavelength of light. The optical reception system collects the laser light reflected from the target along a fan of reception light paths. The electronic control system synchronizes the scan of the beam with a respective time-of-arrival measurement from each of the photo-detectors, and analyzes the time-of-arrival measurements. The system is configured for all of the transmission light paths and all of the reception light paths to lie in one plane, with all of the reception light paths intersecting with at least one of the transmission light paths.
    Type: Application
    Filed: August 5, 2021
    Publication date: May 11, 2023
    Applicant: Red Creamery LLC
    Inventor: Dmitriy Yavid
  • Publication number: 20230103088
    Abstract: A distally-actuated scanning mirror includes: a mirror block with reflective surface on one side; torsional hinges with proximal ends rigidly attached to the mirror block, and with distal ends attached to flexural structures configured to transform translational motion of the piezoelectric elements into rotational motion of the distal ends of the hinges; and piezoelectric elements providing such translational motion. The distally-actuated scanning mirror also includes flexural structures made of separate flexures attached to the opposite surfaces of the distal ends of the hinges, which flexural structures have defined thinned-down flexural points. Portions of the distally-actuated scanning mirror may be 3D printed and/or fabricated by silicon MEMS technology. The mirror is fabricated from a Silicon-on-Insulator wafer, having a relatively thick (e.g., 380 um) handle layer, and a relatively thin e.g., 50 um), where photolithography with backside-alignment allows separate patterning of these two layers.
    Type: Application
    Filed: October 12, 2022
    Publication date: March 30, 2023
    Applicant: Red Creamery, LLC
    Inventors: Ron Goldman, Dmitry Yavid, Igor Paprotny, Christopher Silvio Cosentino
  • Patent number: 11556000
    Abstract: A distally-actuated scanning mirror includes: a mirror block with reflective surface on one side; torsional hinges with proximal ends rigidly attached to the mirror block, and with distal ends attached to flexural structures configured to transform translational motion of the piezoelectric elements into rotational motion of the distal ends of the hinges; and piezoelectric elements providing such translational motion. The distally-actuated scanning mirror also includes flexural structures made of separate flexures attached to the opposite surfaces of the distal ends of the hinges, which flexural structures have defined thinned-down flexural points. Portions of the distally-actuated scanning mirror may be 3D printed and/or fabricated by silicon MEMS technology. The mirror is fabricated from a Silicon-on-Insulator wafer, having a relatively thick (e.g., 380 um) handle layer, and a relatively thin e.g., 50 um), where photolithography with backside-alignment allows separate patterning of these two layers.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: January 17, 2023
    Assignee: Red Creamery LLC
    Inventors: Ron Goldman, Dmitry Yavid, Igor Paprotny, Christopher Silvio Cosentino
  • Patent number: 11156716
    Abstract: A laser radar includes: a laser, an optical transmission system, a 1-dimensional array of photo-detectors, an optical reception system, and an electronic control system. The laser emits a wavelength of light, and the optical transmission system shapes the light into a beam, and scans the beam along a fan of transmission light paths toward a target. The photo-detectors are capable of time-of-arrival measurements and are sensitive to the wavelength of light. The optical reception system collects the laser light reflected from the target along a fan of reception light paths. The electronic control system synchronizes the scan of the beam with a respective time-of-arrival measurement from each of the photo-detectors, and analyzes the time-of-arrival measurements. The system is configured for all of the transmission light paths and all of the reception light paths to lie in one plane, with all of the reception light paths intersecting with at least one of the transmission light paths.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: October 26, 2021
    Assignee: RED CREAMERY LLC
    Inventor: Dmitriy Yavid
  • Publication number: 20210318439
    Abstract: A laser radar includes: a laser, an optical transmission system, a 1-dimensional array of photo-detectors, an optical reception system, and an electronic control system. The laser emits a wavelength of light, and the optical transmission system shapes the light into a beam, and scans the beam along a fan of transmission light paths toward a target. The photo-detectors are capable of time-of-arrival measurements and are sensitive to the wavelength of light. The optical reception system collects the laser light reflected from the target along a fan of reception light paths. The electronic control system synchronizes the scan of the beam with a respective time-of-arrival measurement from each of the photo-detectors, and analyzes the time-of-arrival measurements. The system is configured for all of the transmission light paths and all of the reception light paths to lie in one plane, with all of the reception light paths intersecting with at least one of the transmission light paths.
    Type: Application
    Filed: January 16, 2020
    Publication date: October 14, 2021
    Applicant: Red Creamery LLC
    Inventor: Dmitriy Yavid
  • Patent number: 10571574
    Abstract: A laser radar includes: a laser, an optical transmission system, a 1-dimensional array of photo-detectors, an optical reception system, and an electronic control system. The laser emits a wavelength of light, and the optical transmission system shapes the light into a beam, and scans the beam along a fan of transmission light paths toward a target. The photo-detectors are capable of time-of-arrival measurements and are sensitive to the wavelength of light. The optical reception system collects the laser light reflected from the target along a fan of reception light paths. The electronic control system synchronizes the scan of the beam with a respective time-of-arrival measurement from each of the photo-detectors, and analyzes the time-of-arrival measurements. The system is configured for all of the transmission light paths and all of the reception light paths to lie in one plane, with all of the reception light paths intersecting with at least one of the transmission light paths.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: February 25, 2020
    Assignee: Red Creamery, LLC
    Inventor: Dmitriy Yavid