Abstract: A biometric authentication platform (10) uses fault-tolerant distributed computing to determine if a supplied biometric sample and a sample stored in a registry are from the same person. A collection of reference samples is maintained in a distributed ledger (115) with immutable history of modifications. Results of matching are stored in a separate distributed ledger (125) providing an immutable history log. Coordinated use of both ledgers (115, 125) enable biometric authentication of registered users (140) in real time. Users (140) may interact with providers (150) and/or trusted circles of other users in order to recover user records from the user ledger (115).
Type:
Grant
Filed:
January 28, 2019
Date of Patent:
November 21, 2023
Assignee:
REDROCK BIOMETRICS, INC.
Inventors:
Hua Yang, Leonid Kontsevich, Kevin Horowitz, Igor Lovyagin
Abstract: The present invention describes a device and method for touchless palmprint acquisition. The method can be applied to a terminal device (including but not limited to mobile phones, tablet computers and other portable devices) with a display screen and a front-facing camera. The camera is used to capture images of palms. The screen is used as a supplementary light source. When lighting condition in the palm area is undesirable, the screen changes its display to improve the lighting condition inside the palm, which increases the recognizability of the palmprint. The palmprint acquisition device and method described in the present invention can be directly applied to existing terminal devices without requiring any additional hardware. By adopting a variety of ways to change the display of the built-in screen of the terminal device, the lighting condition of the palm area will be improved and the recognizability of the palmprint will be increased.
Abstract: A computing platform is described to match a palm digital representation to a palm template. The platform includes logic causing presenting a viewfinder image including an image stream and/or a cue appearing to reside substantially in front of a user to guide the user to align a palm at a position within a field of view of a camera; capturing a set of images using the camera; processing the set of images to determine a set of identifying features of the palm; and comparing the set of identified features with enrolled palm prints to identify the palm.
Abstract: A computing platform is described to match a palm print digital representation to a palm print template. The platform includes logic causing an illumination source to illuminate a field of view of a camera with an emission spectrum predominately in a wavelength range less than 485 nm; capturing a set of images using the camera of a palm during the illumination; processing the set of images to determine a set of identifying features of the palm according to intensity gradients in the wavelength range of the illumination source; and comparing the set of identified features with enrolled palm prints to identify the palm.
Abstract: A computing platform is described to match a palm digital representation to a palm template. The platform includes logic causing presenting a viewfinder image including an image stream and/or a cue appearing to reside substantially in front of a user to guide the user to align a palm at a position within a field of view of a camera; capturing a set of images using the camera; processing the set of images to determine a set of identifying features of the palm; and comparing the set of identified features with enrolled palm prints to identify the palm.