Patents Assigned to RefleXion Medical, Inc.
  • Patent number: 12268895
    Abstract: Disclosed herein are methods for radiotherapy treatment plan optimization for irradiating one or more target regions using both an internal therapeutic radiation source (ITRS) and an external therapeutic radiation source (ETRS). One variation of a method comprises iterating through ITRS radiation dose values and ETRS radiation dose values to attain a cumulative dose that meets prescribed dose requirements. In some variations, an ITRS is an injectable compound that has a targeting backbone and a radionuclide, and images acquired using an imaging compound that has the same targeting backbone as the injectable compound can be used to calculate the radiation dose deliverable using the injectable ITRS, and also to calculate firing filters for delivering radiation using a biologically-guided radiation therapy (BGRT) system. Image data acquired from a previous treatment session may be used to adapt the dose provided by an ITRS and/or ETRS for a future treatment session.
    Type: Grant
    Filed: April 14, 2023
    Date of Patent: April 8, 2025
    Assignee: RefleXion Medical, Inc.
    Inventors: Peter Demetri Olcott, Michael Kirk Owens, Debashish Pal
  • Patent number: 12251579
    Abstract: Disclosed herein are methods for radiotherapy treatment planning and delivery that use sensor data from one or more target sensors. One variation of a radiotherapy treatment planning method comprises generating a sensor characterization image based on a sensor characterization probability density function (PDF) of a target sensor and calculating a set of firing filters that may be applied to sensor images generated from sensor data acquired during a radiation-delivery session. Additionally, a variation of a radiotherapy treatment planning method comprises generating multiple sensor characterization images based on multiple sensor characterization PDF of multiple target sensors and calculating multiple sets of firing filters for each of the multiple target sensors.
    Type: Grant
    Filed: February 1, 2023
    Date of Patent: March 18, 2025
    Assignee: RefleXion Medical, Inc.
    Inventor: Yevgen Voronenko
  • Patent number: 12233286
    Abstract: Described herein are methods for beam station delivery of radiation treatment, where the patient platform is moved to a series of discrete patient platform locations or beam stations that are determined during treatment planning, stopped at each of these locations while the radiation source rotates about the patient delivering radiation to the target regions that intersect the radiation beam path, and then moving to the next location after the prescribed dose of radiation (e.g., in accordance with a calculated fluence map) for that location has been delivered to the patient.
    Type: Grant
    Filed: September 21, 2023
    Date of Patent: February 25, 2025
    Assignee: RefleXion Medical, Inc.
    Inventors: Yevgen Voronenko, Jayakrishnan Janardhanan, Debashish Pal, Rostem Bassalow, Peter Demetri Olcott, Michael Kirk Owens
  • Patent number: 12214219
    Abstract: Disclosed herein are systems and methods for adapting and/or updating radiotherapy treatment plans based on biological and/or physiological data and/or anatomical data extracted or calculated from imaging data acquired in real-time (e.g., during a treatment session). Functional imaging data acquired at the time of radiation treatment is used to modify a treatment plan and/or dose delivery instructions to provide a prescribed dose distribution to patient target regions. Also disclosed herein are methods for evaluating treatment plans based on imaging data acquired in real-time.
    Type: Grant
    Filed: April 4, 2023
    Date of Patent: February 4, 2025
    Assignee: RefleXion Medical, Inc.
    Inventors: Michael Kirk Owens, Rostem Bassalow, Peter Demetri Olcott, Yevgen Voronenko, David Quentin Larkin, Samuel Mazin
  • Patent number: 12167922
    Abstract: An apparatus comprising a radiation source, coincident positron emission detectors configured to detect coincident positron annihilation emissions originating within a coordinate system, and a controller coupled to the radiation source and the coincident positron emission detectors, the controller configured to identify coincident positron annihilation emission paths intersecting one or more volumes in the coordinate system and align the radiation source along an identified coincident positron annihilation emission path.
    Type: Grant
    Filed: March 3, 2023
    Date of Patent: December 17, 2024
    Assignee: RefleXion Medical, Inc.
    Inventor: Samuel Mazin
  • Patent number: 12121299
    Abstract: In some embodiments, an apparatus comprises a stationary frame and a thermal ring. The thermal ring may be rotatably coupled to the stationary frame and disposed relative to the stationary frame such that the thermal ring and the stationary frame define an enclosure. The thermal ring may include a thermally-conductive substrate configured to be in thermal contact with a heat-generating component. Heat from the heat-generating component may be transferred to the stationary frame via the enclosure.
    Type: Grant
    Filed: May 6, 2021
    Date of Patent: October 22, 2024
    Assignee: RefleXion Medical, Inc.
    Inventor: Christopher Eric Brown
  • Patent number: 12115386
    Abstract: Disclosed herein are methods for patient setup and patient target region localization for the irradiation of multiple patient target regions in a single treatment session. Virtual localization is a method that can be used to register a patient target region without requiring that the patient is physically moved using the patient platform. Instead, the planned fluence is updated to reflect the current location of the patient target region by selecting a localization reference in the localization image, calculating a localization function based on the localization reference point, and calculating the delivery fluence by convolving the localization function with a shift-invariant firing filter. Mosaic multi-target localization partitions a planned fluence map for multiple patient target regions into sub-regions that can be individually localized.
    Type: Grant
    Filed: January 7, 2022
    Date of Patent: October 15, 2024
    Assignee: RefleXion Medical, Inc.
    Inventors: Yevgen Voronenko, Debashish Pal, David Quentin Larkin, George Zdasiuk, Jayakrishnan Janardhanan, Michael Kirk Owens, Peter Demetri Olcott
  • Patent number: 12090340
    Abstract: Disclosed herein are systems and methods for rapidly delivering high doses of radiation, also known as, flash dose radiotherapy or flash radiotherapy. One variation of a system for flash radiotherapy has a plurality of therapeutic radiation sources on a support structure (e.g., a gantry or arm) and configured to toward a patient target region, and a controller in communication with all of the therapeutic radiation sources. The controller is configured to activate the plurality of therapeutic radiation sources simultaneously so that the patient target region rapidly receives a high dose of radiation, e.g. the entire prescribed dose of radiation. In some variations, a flash radiotherapy system has a pulsed, high-power source that may be used to generate an X-ray pulse that delivers a dose having a dose rate from about 7.5 Gy/s to about 70 Gy/s. Flash radiotherapy systems may also include one or more imaging systems mounted on the support structure.
    Type: Grant
    Filed: March 16, 2022
    Date of Patent: September 17, 2024
    Assignee: RefleXion Medical, Inc.
    Inventors: Brent Harper, David Quentin Larkin, Peter Demetri Olcott, George Andrew Zdasiuk, David Nett, Victor Carboni
  • Patent number: 12059285
    Abstract: Disclosed herein are methods for reducing beam-hardening artifacts in CT imaging using a mapping operator that comprises a hybrid spectral model that incorporates air scan X-ray intensity data acquired at two different effective mean energies. In one variation, the air scan X-ray intensity data acquired during a calibration session is combined with an ideal spectral model for each X-ray detector to derive the hybrid spectral mode. A mapping operator based on the hybrid spectral model is used to correct beam-hardening artifacts in the acquired CT projection data. In some variations, the mapping operator is a lookup table of monochromatic (corrected) projection values, and the acquired CT projection data is used to calculate the index of the lookup table entry that contains the corrected projection value that corresponds with the acquired CT projection data.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: August 13, 2024
    Assignee: RefleXion Medical, Inc.
    Inventors: Hewei Gao, Zhihui Sun
  • Patent number: 12032107
    Abstract: Disclosed herein are methods and devices for the acquisition of positron emission (or PET) data in the presence of ionizing radiation that causes afterglow of PET detectors. In one variation, the method comprises adjusting a coincidence trigger threshold of the PET detectors during a therapy session. In one variation, the method comprises adjusting a gain factor used in positron emission data acquisition (e.g., a gain factor used to multiply and/or shift the output(s) of a PET detector(s)) during a therapy session. In some variations, a method for acquiring positron emission data during a radiation therapy session comprises suspending communication between the PET detectors and a signal processor of a controller for a predetermined period of time after a radiation pulse has been emitted by the linac.
    Type: Grant
    Filed: May 2, 2023
    Date of Patent: July 9, 2024
    Assignee: RefleXion Medical, Inc.
    Inventors: Peter Demetri Olcott, Matthew Francis Bieniosek, Brent Harper
  • Patent number: 12029921
    Abstract: Disclosed herein are systems and methods for real-time monitoring of patient position and/or location during a radiation treatment session. Images acquired of a patient during a treatment session can be used to calculate the patient's position and/or location with respect to the components of the radiation therapy system. One variation of a radiation therapy system includes a circular gantry with a rotatable ring coupled to a stationary frame, a therapeutic radiation source mounted on the rotatable ring, and a patient-monitoring imaging system mounted on the rotatable ring. The patient-monitoring system may have one or more image sensors or cameras disposed on the rotatable ring within a bore region of the radiation therapy system, and may be configured to acquire image data as the ring rotates.
    Type: Grant
    Filed: June 28, 2022
    Date of Patent: July 9, 2024
    Assignee: RefleXion Medical, Inc.
    Inventors: Thomas Leroy Laurence, Jr., Jayakrishnan Janardhanan
  • Patent number: 12023523
    Abstract: Disclosed herein are systems and methods for monitoring calibration of positron emission tomography (PET) systems. In some variations, the systems include an imaging assembly having a gantry comprising a plurality of positron emission detectors. A housing may be coupled to the gantry, and the housing may include a bore and a radiation source holder spaced away from a patient scan region within the bore. A processor may be configured to receive positron emission data from the positron emission detectors and to distinguish the positron emission data from the radiation source holder and from the patient scan region. A fault signal may be generated when the positron emission data from the radiation source holder exceeds one or more threshold parameters or criteria.
    Type: Grant
    Filed: November 16, 2022
    Date of Patent: July 2, 2024
    Assignee: RefleXion Medical, Inc.
    Inventors: Peter Demetri Olcott, Matthew Francis Bieniosek
  • Patent number: 12025758
    Abstract: Disclosed herein are variations of megavoltage (MV) detectors that may be used for acquiring high resolution dynamic images and dose measurements in patients. One variation of a MV detector comprises a scintillating optical fiber plate, a photodiode array configured to receive light data from the optical fibers, and readout electronics. In some variations, the scintillating optical fiber plate comprises one or more fibers that are focused to the radiation source. The diameters of the fibers may be smaller than the pixels of the photodiode array. In some variations, the fiber diameter is on the order of about 2 to about 100 times smaller than the width of a photodiode array pixel, e.g., about 20 times smaller. Also disclosed herein are methods of manufacturing a focused scintillating fiber optic plate.
    Type: Grant
    Filed: June 6, 2023
    Date of Patent: July 2, 2024
    Assignee: RefleXion Medical, Inc.
    Inventor: Manat Maolinbay
  • Patent number: 11975220
    Abstract: Disclosed herein are radiation therapy systems and methods. These radiation therapy systems and methods are used for emission-guided radiation therapy, where gamma rays from markers or tracers that are localized to patient tumor regions are detected and used to direct radiation to the tumor. The radiation therapy systems described herein comprise a gantry comprising a rotatable ring coupled to a stationary frame via a rotating mechanism such that the rotatable ring rotates up to about 70 RPM, a radiation source (e.g., MV X-ray source) mounted on the rotatable ring, and one or more PET detectors mounted on the rotatable ring.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: May 7, 2024
    Assignee: RefleXion Medical, Inc.
    Inventors: Brent Harper, David Larkin, David Nett
  • Patent number: 11904184
    Abstract: A radiation therapy system comprising a therapeutic radiation system (e.g., an MV X-ray source, and/or a linac) and a co-planar imaging system (e.g., a kV X-ray system) on a fast rotating ring gantry frame. The therapeutic radiation system and the imaging system are separated by a gantry angle, and the gantry frame may rotate in a direction such that the imaging system leads the MV system. The radiation sources of both the therapeutic and imaging radiation systems are each collimated by a dynamic multi-leaf collimator (DMLC) disposed in the beam path of the MV X-ray source and the kV X-ray source, respectively. In one variation, the imaging system identifies patient tumor(s) positions in real-time. The DMLC for the imaging radiation source limits the kV X-ray beam spread to the tumor(s) and/or immediate tumor regions, and helps to reduce irradiation of healthy tissue (e.g., reduce the dose-area product).
    Type: Grant
    Filed: November 9, 2022
    Date of Patent: February 20, 2024
    Assignee: RefleXion Medical, Inc.
    Inventor: Manat Maolinbay
  • Patent number: 11896848
    Abstract: Disclosed herein are methods for patient setup and registration for the irradiation of target tissue regions. A method for positioning a patient for radiation therapy may include acquiring an image of a first patient target region and a second patient target region. A first set of patient position-shift vectors may be calculated based on the acquired image and a treatment planning image of the first patient target region. A second set of patient position-shift vectors may be calculated based on the acquired image, a treatment planning image of the second patient target region, and the first set of patient position-shift vectors. The patient may be positioned according to the first set of patient position-shift vectors in a first location. The patient may be moved to a second location and positioned according to the second set of patient position-shift vectors.
    Type: Grant
    Filed: July 14, 2021
    Date of Patent: February 13, 2024
    Assignee: RefleXion Medical, Inc.
    Inventors: Jayakrishnan Janardhanan, Michael Kirk Owens
  • Patent number: 11878185
    Abstract: Described herein are multi-leaf collimators that comprise leaf drive mechanisms. The leaf drive mechanisms can be used in binary multi-leaf collimators used in emission-guided radiation therapy. One variation of a multi-leaf collimator comprises a pneumatics-based leaf drive mechanism. Another variation of a multi-leaf collimator comprises a spring-based leaf drive mechanism having a spring resonator.
    Type: Grant
    Filed: December 30, 2021
    Date of Patent: January 23, 2024
    Assignee: RefleXion Medical, Inc.
    Inventors: Eugene Duval, David Meer, Layton Hale, David Larkin
  • Patent number: 11813481
    Abstract: Systems and methods for shuttle mode radiation delivery are described herein. One method for radiation delivery comprises moving the patient platform through the patient treatment region multiple times during a treatment session. This may be referred to as patient platform or couch shuttling (i.e., couch shuttle mode). Another method for radiation delivery comprises moving the therapeutic radiation source jaw across a range of positions during a treatment session. The jaw may move across the same range of positions multiple times during a treatment session. This may be referred to as jaw shuttling (i.e., jaw shuttle mode). Some methods combine couch shuttle mode and jaw shuttle mode. Methods of dynamic or pipelined normalization are also described.
    Type: Grant
    Filed: July 29, 2022
    Date of Patent: November 14, 2023
    Assignee: RefleXion Medical, Inc.
    Inventors: Debashish Pal, Ayan Mitra, Christopher Eric Brown, Peter Demetri Olcott, Yevgen Voronenko, Rostem Bassalow
  • Patent number: 11801398
    Abstract: Described herein are methods for beam station delivery of radiation treatment, where the patient platform is moved to a series of discrete patient platform locations or beam stations that are determined during treatment planning, stopped at each of these locations while the radiation source rotates about the patient delivering radiation to the target regions that intersect the radiation beam path, and then moving to the next location after the prescribed dose of radiation (e.g., in accordance with a calculated fluence map) for that location has been delivered to the patient.
    Type: Grant
    Filed: June 2, 2022
    Date of Patent: October 31, 2023
    Assignee: RefleXion Medical, Inc.
    Inventors: Yevgen Voronenko, Jayakrishnan Janardhanan, Debashish Pal, Rostem Bassalow, Peter Demetri Olcott, Michael Kirk Owens
  • Patent number: 11794036
    Abstract: Described here are systems, devices, and methods for imaging and radiotherapy procedures. Generally, a radiotherapy system may include a radiotransparent patient platform, a radiation source coupled to a multi-leaf collimator, and a detector facing the collimator. The radiation source may be configured to emit a first beam through the collimator to provide treatment to a patient on the patient platform. A controller may be configured to control the radiotherapy system.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: October 24, 2023
    Assignee: RefleXion Medical, Inc.
    Inventors: Rostem Bassalow, Manat Maolinbay, Brent Harper