Patents Assigned to Regeneran Pharmaceuticals, Inc.
  • Patent number: 11717586
    Abstract: The invention provides methods for microbial bioburden reduction of various chromatography matrices, including bioburden reduction in the context of large-scale Protein A-based affinity chromatography columns.
    Type: Grant
    Filed: June 24, 2022
    Date of Patent: August 8, 2023
    Assignee: Regeneran Pharmaceuticals, Inc.
    Inventors: Nathan L. Mao, Wenbin Qi, Bernhard Schilling, Scott Carver
  • Patent number: 11713461
    Abstract: The present disclosure provides methods of treating patients having decreased bone mineral density, methods of identifying subjects having increased risk of developing decreased bone mineral density, methods of detecting human Zinc And Ring Finger 3 (ZNRF3) variant nucleic acid molecules and variant polypeptides, and ZNRF3 variant nucleic acid molecules and variant polypeptides.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: August 1, 2023
    Assignees: Regeneran Pharmaceuticals, Inc., University of Maryland, Baltimore
    Inventors: Da-Wei Gong, Nehal Gosalia, Alan Shuldiner, Cristopher Van Hout, James Perry
  • Patent number: 11713922
    Abstract: Lyophilization methods for preparing protein formulations for long-term storage at room temperature or improved stability at refrigeration storage are provided. Specifically, the present application provides lyophilization methods to obtain a target percentage of residual moisture of a lyophilized product, such as 3-5% residual moisture. The secondary drying of the lyophilization can be conducted under controlling rate of desorption under a temperature which is similar to the shelf temperature of the primary drying. Alternatively, the lyophilization can be conducted without a distinguished secondary drying step.
    Type: Grant
    Filed: November 11, 2022
    Date of Patent: August 1, 2023
    Assignee: Regeneran Pharmaceuticals, Inc.
    Inventors: Xiaolin Tang, Mary Kleppe, Ravi Chari, Franco Tzul
  • Patent number: 11697828
    Abstract: Compositions and methods are provided for creating and promoting biallelic targeted modifications to genomes within cells and for producing non-human animals comprising the modified genomes. Also provided are compositions and methods for modifying a genome within a cell that is heterozygous for an allele to become homozygous for that allele. The methods make use of Cas proteins and two or more guide RNAs that target different locations within the same genomic target locus. Also provided are methods of identifying cells with modified genomes.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: July 11, 2023
    Assignee: Regeneran Pharmaceuticals, Inc.
    Inventors: David Frendewey, Ka-Man Venus Lai, Wojtek Auerbach, Gustavo Droguett, Anthony Gagliardi, David M. Valenzuela, Vera Voronina, Lynn Macdonald, Andrew J. Murphy, George D. Yancopoulos
  • Patent number: 11690362
    Abstract: Nuclease-mediated methods for expanding repeats already present at a genomic locus are provided. Non-human animal genomes, non-human animal cells, and non-human animals comprising a heterologous hexanucleotide repeat expansion sequence inserted at an endogenous C9orf72 locus and methods of making such non-human animal cells and non-human animals through nuclease-mediated repeat expansion are also provided. Methods of using the non-human animal cells or non-human animals to identify therapeutic candidates that may be used to prevent, delay or treat one or more neurodegenerative disorders associated with repeat expansion at the C9orf72 locus are also provided.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: July 4, 2023
    Assignee: Regeneran Pharmaceuticals, Inc.
    Inventors: Daisuke Kajimura, Aarti Sharma-Kanning, Brittany Dubose, Gustavo Droguett, Chia-Jen Siao, Junko Kuno, David Frendewey, Brian Zambrowicz
  • Patent number: 11684050
    Abstract: Non-human animals, and methods and compositions for making and using the same, are provided, wherein the non-human animals comprise a humanization of a Programmed cell death 1 (Pdcd1) gene. The non-human animals, in some embodiments, comprise a genetic modification to an endogenous Pdcd1 gene so that the non-human animals express a PD-1 polypeptide that includes a human portion and an endogenous portion (e.g., a non-human portion).
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: June 27, 2023
    Assignee: Regeneran Pharmaceuticals, Inc.
    Inventors: Elena Burova, Alexander O. Mujica, Ka-Man Venus Lai, Andrew J. Murphy
  • Patent number: 11674968
    Abstract: Compositions and methods for identifying free thiols in protein are provided. An exemplary method labeling peptides with a tag to identify free thiols and a tag to identify native disulfide bonds and analyzing the tags using targeted MS2. In one embodiment, the method provides complete coverage of all 32 cysteine residues in an IgG molecule. In other embodiments the method covers the 16 cysteine residues on the heavy and light chains in an IgG molecule. In another embodiment, the method covers the 5 cysteine residues on each light chain of an IgG molecule. In another embodiment, the method covers the 11 cysteine residues on each heavy chain of an IgG molecule.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: June 13, 2023
    Assignee: Regeneran Pharmaceuticals, Inc.
    Inventors: Sook Yen E, David Bramhall, Haibo Qiu
  • Patent number: 11673930
    Abstract: The present disclosure relates to IL10 agonists with improved anti-tumor therapeutic efficacy. IL10 agonists disclosed herein comprise an IgG Fc domain, a linker moiety, and an IL10 moiety.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: June 13, 2023
    Assignee: Regeneran Pharmaceuticals, Inc.
    Inventors: Jie Dai, Maria del Pilar Molina-Portela, Ella Ioffe, Markus Mohrs
  • Patent number: 11666658
    Abstract: The disclosure relates to rifamycin analog compounds, intermediates and precursors thereof, and pharmaceutical compositions capable of inhibiting bacterial growth (e.g., S. aureus growth) and treating bacterial infections (e.g., S. aureus infections). The disclosure further relates to antibody-drug conjugates of rifamycin analog compounds and antibodies, for example, antibodies specific for infectious disease-related targets such as membrane glycoprotein receptor (MSR1), wall teichoic acids (WTA) or Protein A, and methods of use thereof to inhibit bacterial growth and treat bacterial infections.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: June 6, 2023
    Assignee: Regeneran Pharmaceuticals, Inc.
    Inventors: Thomas Nittoli, Seungyong Sean Choi, Mrinmoy Saha
  • Patent number: 11642390
    Abstract: The present invention provides apelin receptor (APLNR) modulators that bind to APLNR and methods of using the same. The invention includes APLNR modulators such as antibodies, or antigen-binding fragments thereof, which inhibit or attenuate APLNR-mediated signaling. The invention includes APLNR modulators such as antibodies, or antibody fusion proteins thereof, that activate APLNR-mediated signaling. According to certain embodiments of the invention, the antibodies or antigen-binding fragments or antibody fusion proteins are fully human antibodies that bind to human APLNR with high affinity. The APLNR modulators of the invention are useful for the treatment of diseases and disorders associated with APLNR signaling and/or APLNR cellular expression, such as cardiovascular diseases, angiogenesis diseases, metabolic diseases and fibrotic diseases.
    Type: Grant
    Filed: February 4, 2021
    Date of Patent: May 9, 2023
    Assignee: Regeneran Pharmaceuticals, Inc.
    Inventors: Panayiotis Stevis, Andrew J. Murphy, Jesper Gromada, Yonaton Ray, Jee H. Kim, Ivan B. Lobov
  • Patent number: 11622547
    Abstract: Non-human animal genomes, non-human animal cells, and non-human animals comprising a humanized albumin (ALB) locus and methods of making and using such non-human animal genomes, non-human animal cells, and non-human animals are provided. Non-human animal cells or non-human animals comprising a humanized albumin locus express a human albumin protein or a chimeric albumin protein, fragments of which are from human albumin. Methods are provided for using such non-human animals comprising a humanized albumin locus to assess in vivo efficacy of human-albumin-targeting reagents such as nuclease agents designed to target human albumin.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: April 11, 2023
    Assignee: Regeneran Pharmaceuticals, Inc.
    Inventors: Qing Fang, Chia-Jen Siao, Dan Chalothorn, KehDih Lai, Leah Sabin, Rachel Sattler, Brian Zambrowicz, Lori Morton
  • Patent number: 11589562
    Abstract: This disclosure relates to genetically modified rodent animals and rodent models of human diseases. More specifically, this disclosure relates to genetically modified rodents whose genome comprises a humanized Il1rl2 gene (coding for the IL1rl2 subunit of the IL-36R protein) and human IL-36?, ? and ? ligand genes. The genetically modified rodents disclosed herein display enhanced skin and intestinal inflammation as a preclinical model of psoriasis and IBD, respectively, and serve as a rodent model of human DITRA disease.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: February 28, 2023
    Assignee: Regeneran Pharmaceuticals, Inc.
    Inventors: Andrew J. Murphy, Alexander O. Mujica, Ka-Man Venus Lai, Sokol Haxhinasto
  • Patent number: 11584966
    Abstract: Methods of treating patients having varicose veins, methods of identifying subjects having an increased risk of developing varicose veins, and methods of diagnosing varicose veins in a human subject, comprising detecting the presence of Piezo Type Mechanosensitive Ion Channel Component 1 (PIEZO1) predicted loss-of-function variant nucleic acid molecules and polypeptides in a biological sample from the patient or subject, are provided herein.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: February 21, 2023
    Assignee: Regeneran Pharmaceuticals, Inc.
    Inventors: Joshua Backman, Aris Baras
  • Patent number: 11559576
    Abstract: The present invention provides antigen-binding proteins that specifically bind to an HLA-displayed human papillomavirus (HPV) peptide, and therapeutic and diagnostic methods of using those binding proteins.
    Type: Grant
    Filed: August 13, 2020
    Date of Patent: January 24, 2023
    Assignee: Regeneran Pharmaceuticals, Inc.
    Inventors: Kevin A. Bray, Frank Delfino, Matthew C. Franklin, Elena S. Garnova, Jessica Kirshner, Douglas MacDonald, William Olson, Gavin Thurston
  • Patent number: 11519004
    Abstract: Non-human animal cells and non-human animals comprising CRISPR/Cas synergistic activation mediator system components and methods of making and using such non-human animal cells and non-human animals are provided. Methods are provided for using such non-human animals to increase expression of target genes in vivo and to assess CRISPR/Cas synergistic activation mediator systems for the ability to increase expression of target genes in vivo.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: December 6, 2022
    Assignee: Regeneran Pharmaceuticals, Inc.
    Inventors: Charleen Hunt, Suzanne Hartford, Guochun Gong, Brian Zambrowicz
  • Patent number: 11512144
    Abstract: This invention relates to site-specific integration and expression of recombinant proteins in eukaryotic cells. In particular, the invention includes compositions and methods for improved expression of antigen-binding proteins including monospecific and bispecifc antibodies in eukaryotic cells, particularly Chinese hamster (Cricetulus griseus) cell lines, by employing multiple expression-enhancing locus.
    Type: Grant
    Filed: April 20, 2017
    Date of Patent: November 29, 2022
    Assignee: Regeneran Pharmaceuticals, Inc.
    Inventors: Robert Babb, Darya Burakov, Gang Chen, James P. Fandl, Yu Zhao
  • Patent number: 11505594
    Abstract: The present disclosure pertains to compositions comprising anti-VEGF proteins and methods for producing such compositions.
    Type: Grant
    Filed: April 1, 2022
    Date of Patent: November 22, 2022
    Assignee: Regeneran Pharmaceuticals, Inc.
    Inventors: Andrew Tustian, Ankit Vartak, Thomas Daly, Erica Pyles, Nisha Palackal, Shunhai Wang, Ning Li, Matthew Franklin, Shawn Lawrence, Amy Johnson, Meghan Casey, Jaimie Grapel
  • Patent number: 11499164
    Abstract: Methods for introducing a scarless targeted genetic modification into a preexisting targeting vector are provided. The methods can use combinations of bacterial homologous recombination (BHR) and in vitro assembly to introduce such targeted genetic modifications into a preexisting targeting vector in a scarless manner.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: November 15, 2022
    Assignee: Regeneran Pharmaceuticals, Inc.
    Inventors: Susannah Brydges, Jose F. Rojas, Gregg S. Warshaw, Chia-Jen Siao
  • Patent number: 11492392
    Abstract: The present invention provides monoclonal antibodies that bind to the complement factor 5 (C5) protein, and methods of use thereof. In various embodiments of the invention, the antibodies are fully human antibodies that bind to C5 protein. In some embodiments, the antibodies of the invention are useful for inhibiting or neutralizing C5 activity, thus providing a means of treating or preventing a C5-related disease or disorder in humans. In some embodiments, the invention provides for an anti-C5 antibody that has improved pharmacokinetic and pharmacodynamic properties, e.g., a half-life of more than 10 days.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: November 8, 2022
    Assignee: Regeneran Pharmaceuticals, Inc.
    Inventors: Ying Hu, Adrianna Latuszek, Carmelo Romano, William Olson
  • Patent number: 11485770
    Abstract: The present disclosure pertains to compositions comprising anti-VEGF proteins and methods for producing such compositions.
    Type: Grant
    Filed: January 13, 2022
    Date of Patent: November 1, 2022
    Assignee: Regeneran Pharmaceuticals, Inc.
    Inventors: Shunhai Wang, Ning Li, Hunter Chen, Amardeep Singh Bhupender Bhalla