Patents Assigned to Regents of the University of Michigan
  • Publication number: 20240070353
    Abstract: A computer system includes memory hardware configured to store a multitask neural network, an optimization model, a material database, material feature vector inputs, and computer-executable instructions which include training the multitask neural network with the material feature vector inputs to generate a material structural parameter output, obtaining at least one of a target optical perception parameter and a target optical response, supplying the target optical perception parameter or target optical response and at least two of the multiple material data structures of the material database to the multitask neural network to output the at least one predicted material and the predicted structural parameter distribution, processing, by the optimization model, the predicted structural parameter distribution to generate a tuned structural parameter output, and transmitting the at least one predicted material and the tuned structural parameter output to a computing device to facilitate generation of an optica
    Type: Application
    Filed: August 25, 2023
    Publication date: February 29, 2024
    Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Haozhu WANG, Lingjie Jay GUO
  • Patent number: 11916187
    Abstract: Disclosed are electrochemical devices, such as lithium ion battery electrodes, lithium ion conducting solid-state electrolytes, and solid-state lithium ion batteries including these electrodes and solid-state electrolytes. Also disclosed are methods for making such electrochemical devices. Also disclosed are composite electrodes for solid state electrochemical devices. The composite electrodes include one or more separate phases within the electrode that provide electronic and ionic conduction pathways in the electrode active material phase.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: February 27, 2024
    Assignee: The Regents of the University of Michigan
    Inventors: Jeffrey Sakamoto, Travis Thompson, Nathan Taylor
  • Patent number: 11911128
    Abstract: A mote includes an optical receiver that wirelessly receives a power and data signal in form of NIR light energy within a patient and converts the NIR light energy to an electrical signal having a supply voltage. A control module supplies the supply voltage to power devices of the mote. A clock generation circuit locks onto a target clock frequency based on the power and data signal and generates clock signals. A data recovery circuit sets parameters of one of the devices based on the power and data signal and a first clock signal. An amplifier amplifies a neuron signal detected via an electrode inserted in tissue of the patient. A chip identifier module, based on a second clock signal, generates a recorded data signal based on a mote chip identifier and the neuron signal. A driver transmits the recorded data signal via a LED or a RF transmitter.
    Type: Grant
    Filed: February 11, 2021
    Date of Patent: February 27, 2024
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: David T. Blaauw, Jamie Phillips, Cynthia Anne Chestek, Taekwang Jang, Hun-Seok Kim, Dennis Sylvester, Jongyup Lim, Eunseong Moon, Michael Barrow, Samuel Nason, Julianna Richie, Paras Patel
  • Patent number: 11903729
    Abstract: A method and an osseointegrated prosthesis system having an osseointegrated prosthesis member are provided having a monitoring system operably coupled to the osseointegrated prosthesis member configured to quantitatively assess the osseointegration of the osseointegrated prosthesis member, a wave-generating element coupled to the osseointegrated prosthesis member and configured to output guided waves along the osseointegrated prosthesis member interrogating an interface between bone and the osseointegrated prosthesis member, and a sensing system configured to sense a condition of the interface between bone and the prosthesis.
    Type: Grant
    Filed: March 30, 2023
    Date of Patent: February 20, 2024
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Jerome P. Lynch, Wentao Wang
  • Patent number: 11909176
    Abstract: An all-epitaxial, electrically injected surface-emitting green laser operates in a range of about 520-560 nanometers (nm). At 523 nm, for example, the device exhibits a threshold current density of approximately 0.4 kilo-amperes per square centimeter (kA/cm2), which is over one order of magnitude lower than that of previously reported blue laser diodes.
    Type: Grant
    Filed: October 15, 2020
    Date of Patent: February 20, 2024
    Assignee: The Regents of the University of Michigan
    Inventors: Yong-Ho Ra, Roksana Tonny Rashid, Xianhe Liu, Zetian Mi
  • Patent number: 11898132
    Abstract: A bioreactor and method of forming complex three-dimensional tissue constructs in a single culture chamber. The bioreactor and methods may be used to form multi-phasic tissue constructs having tissue formed from multiple cell types in a single culture chamber. The bioreactor includes at least one translation mechanism to facilitate translation of one or more tissue constructs without direct user intervention, thereby providing a closed, sterile environment for complex tissue fabrication. The bioreactor may be used as a stand-alone device or as part of a large-scale system including many bioreactors. The large-scale system may include a perfusion system to monitor and regulate the tissue culture environment.
    Type: Grant
    Filed: July 20, 2021
    Date of Patent: February 13, 2024
    Assignee: The Regents of the University of Michigan
    Inventors: Lisa M. Larkin, Ellen M. Arruda, Michael J. Smietana, Pablo Moncada-Larrotiz
  • Patent number: 11896974
    Abstract: A microfluidic device system includes a channel having an entrance and an exit, a height at the entrance being greater than a height at the exit. The height of the channel may decrease continuously from the height at the entrance to the height at the exit. Cells or particles or beads traveling through the channel become trapped based on their size and/or deformability. A visual sensor captures images of the trapped cells or particles or beads, and image software analyzes the captured images to provide size and/or deformability and/or fluorescence information. A method of fabricating such a microfluidic device includes introducing a glass wafer to an etching solution at a specific rate such that a first end of the glass wafer is etched longer than other portions of the glass wafer.
    Type: Grant
    Filed: July 7, 2022
    Date of Patent: February 13, 2024
    Assignee: REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Mark A. Burns, Alyse D. Krausz, Sarah Elizabeth Mena, Martin Patrick De Beer, Kevin R. Ward, Frederick Korley
  • Patent number: 11901473
    Abstract: To reach high efficiencies, thermophotovoltaic cells must utilize the broad spectrum of a radiative thermal source. One promising approach to overcome this challenge is to have low-energy photons reflected and reabsorbed by the thermal emitter, where their energy can have another chance at contributing toward photogeneration in the cell. However, current methods for photon recuperation are limited by insufficient bandwidth or parasitic absorption, resulting in large efficiency losses relative to theoretical limits. This work demonstrates nearly perfect reflection of low-energy photons (˜99%) by embedding an air layer within the TPV cell. This result represents a four-fold reduction in parasitic absorption relative to existing TPV cells. As out-of-band reflectance approaches unity, TPV efficiency becomes nearly insensitive to cell bandgap and emitter temperature. Accessing this regime unlocks a range of possible materials and heat sources that were previously inaccessible to TPV energy conversion.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: February 13, 2024
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Tobias Burger, Byungjun Lee, Dejiu Fan, Andrej Lenert, Stephen R. Forrest
  • Patent number: 11897822
    Abstract: A system for generating a concentrated product from a feedstock includes a reciprocating concentration system that includes first and second chambers to which the feedstock is alternately provided and from which the concentrated product is alternately removed, and a heat transfer system in thermal communication with the first and second chambers, the heat transfer system being configured to reversibly transfer heat between the first and second chambers such that the first chamber alternates between melting a frozen portion of the feedstock in the second chamber and having a frozen portion of the feedstock in the first chamber melted by the feedstock in the second chamber. The system further includes a heat dump system in thermal communication with the reciprocating concentration system, the heat dump system being configured to remove heat from the reciprocating concentration system.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: February 13, 2024
    Assignee: The Regents of the University of Michigan
    Inventors: Abraham Noe-Hays, Nancy G. Love
  • Publication number: 20240046563
    Abstract: A computer includes a processor and a memory, and the memory stores instructions executable by the processor to jointly train a geometric NeRF multilayer perceptron (MLP) and a color NeRF MLP to model a scene using an occupancy grid map, camera data of the scene from a camera, and lidar data of the scene from a lidar; supervise the geometric NeRF MLP with the lidar data during the joint training; and supervise the color NeRF MLP with the camera data during the joint training. The geometric NeRF MLP is a neural radiance field modeling a geometry of the scene, and the color NeRF MLP is a neural radiance field modeling colors of the scene.
    Type: Application
    Filed: July 25, 2023
    Publication date: February 8, 2024
    Applicants: Ford Global Technologies, LLC, THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Alexandra Carlson, Nikita Jaipuria, Punarjay Chakravarty, Manikandasriram Srinivasan Ramanagopal, Ramanarayan Vasudevan, Katherine Skinner
  • Patent number: 11890788
    Abstract: Methods of producing polymer-metal hybrid components that are bonded by C—O-M bonds at the interface using at least one of the hot pressing, rolling, and injection molding methods to create chemical bond formation conditions at the polymer and metal interface. When the thermal cycle and compressive pressure specified herein is combinationally created at the polymer and metal interfaced, strong C—O-M bonds forms at the interface and strongly bonds the metal and polymer together through the reaction carbonyl groups (C?O) in polymer and the metal surface. For polymers lacking enough carbonyl groups, new functional groups can be in-situ generation through introducing distributed air pockets at the polymer-metal interface for forming 3-dimensional distributed C—O-M bonds at the interface.
    Type: Grant
    Filed: May 18, 2021
    Date of Patent: February 6, 2024
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Fengchao Liu, Pingsha Dong
  • Patent number: 11893658
    Abstract: An augmented virtual vehicle testing system and method for presenting graphics to a vehicle operator during operation of a vehicle. The method includes: determining a position of a vehicle operator within a vehicle testing environment; executing an augmentative simulation of the vehicle testing environment, wherein the augmentative simulation is used to provide a position of one or more virtual objects within the vehicle testing environment; generating graphics representing the one or more virtual objects based on the position of the vehicle operator and the position of the one or more virtual objects within the vehicle testing environment; and presenting the graphics on an electronic display and to the vehicle operator during operation of the vehicle.
    Type: Grant
    Filed: August 17, 2022
    Date of Patent: February 6, 2024
    Assignee: The Regents of the University of Michigan
    Inventors: Tyler S. Worman, Huei Peng, Gregory J. McGuire
  • Patent number: 11890223
    Abstract: A heating and/or cooling device for contact with a human body is provided having a power source outputting electrical energy, a temperature controller operably coupled to the power source configured to maintain a predetermined temperature parameter, and at least one heating and/or cooling module operably coupled to the temperature controller for selectively receiving the electrical energy and being responsive thereto to heat and/or cool the human body. The at least one heating and/or cooling module having a pair of electrodes spaced apart by a thermoelectric powder and an insulator at least partially surrounding the thermoelectric powder.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: February 6, 2024
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Sridhar Lakshmanan, Michael William Putty
  • Patent number: 11895853
    Abstract: Organic photovoltaic cells (OPVs) and their compositions are described herein. In one or more embodiments, the OPV or solar cell includes a first electrode (e.g., cathode); a second electrode (e.g., anode); an active layer positioned between the first electrode and the second electrode; and a channel layer positioned between the first electrode and the active layer, wherein the channel layer is configured to laterally disperse a charge across the channel layer. In certain examples, the first electrode is arranged in a grid structure having a plurality of electrode segments and a respective opening between adjacent segments of the first electrode.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: February 6, 2024
    Assignee: The Regents of the University of Michigan
    Inventors: Stephen Forrest, Quinn Burlingame, Caleb Coburn
  • Patent number: 11888451
    Abstract: An amplifier is presented with a sample and average common mode feedback resistor. The amplifier circuit includes a feedback capacitor and a feedback resistor in parallel with the feedback capacitor, where the feedback capacitor and the feedback resistor form part of the negative feedback path for the amplifier. Of note, the feedback resistor is comprised of a low pass filter in series with a switched capacitor resistor, such that the low pass filter is electrically coupled to the output of the amplifier circuit and the switched capacitor resistor is electrically coupled to the inverting input of the amplifier circuit. The amplifier circuit further includes a control circuit interfaced with switches of the switched capacitor resistor. The high pass corner of the switched capacitor resistor is preferably lower than corner of the low pass filter.
    Type: Grant
    Filed: April 29, 2021
    Date of Patent: January 30, 2024
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Rohit Rothe, Sechang Oh, Kyojin Choo, Seok Hyeon Jeong, Dennis Sylvester, David T. Blaauw
  • Patent number: 11889709
    Abstract: A method of fabricating a multi-junction photosensitive device is provided. The method may include fabricating at least two photoactive layers, wherein at least one photoactive layer is fabricated on a transparent substrate, and at least one photoactive layer is fabricated on a reflective substrate, patterning at least one optical filter layer on at least one photoactive layer fabricated on a transparent substrate, and bonding the at least two photoactive layers using cold weld or van der Waals bonding. A multi-junction photosensitive device is also provided. The device may have at least two photoactive layers, and at least one optical filter layer, wherein at least two layers are bonded using cold weld or van der Waals bonding. The optical filter layer may be a Distributed Bragg Reflector.
    Type: Grant
    Filed: February 29, 2016
    Date of Patent: January 30, 2024
    Assignee: The Regents of the University of Michigan
    Inventors: Stephen R. Forrest, Kyusang Lee
  • Patent number: 11883381
    Abstract: Provided herein are small molecule inhibitors of ASH1L activity and small molecules that facilitate ASH1L degradation and methods of use thereof for the treatment of disease, including acute leukemia, solid cancers and other diseases dependent on activity of ASH1L.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: January 30, 2024
    Assignee: The Regents of the University of Michigan
    Inventors: Jolanta Grembecka, Tomasz Cierpicki, David Rogawski, Dmitry Borkin, Szymon Klossowski, Zhuang Jin, Deanna Montgomery, Jing Deng, Marta Krotoska, Hao Li
  • Publication number: 20240030927
    Abstract: A phase locked loop (PLL) includes a phase detector configured to receive a reference signal and a feedback signal, wherein the reference signal has a reference frequency, sample the feedback signal, and output a phase detection signal indicative of a phase of the feedback signal. A voltage controlled oscillator is configured to generate an output signal based on the phase detection signal. The output signal has an output frequency greater than the reference frequency.
    Type: Application
    Filed: July 19, 2023
    Publication date: January 25, 2024
    Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Matthew R. BELZ, Lu JIE, Seungheun SONG, Michael P. FLYNN
  • Publication number: 20240028900
    Abstract: Recent advances in model pruning have enabled sparsity-aware deep neural network accelerators that improve the energy efficiency and performance of inference tasks. SONA, a novel transform-domain neural network accelerator is introduced in which convolution operations are replaced by element-wise multiplications and weights are orthogonally structured to be sparse. SONA employs an output stationary dataflow coupled with an energy-efficient memory organization to reduce the overhead of sparse-orthogonal transform-domain kernels that are concurrently processed while maintaining full multiply-and-accumulate (MAC) array utilization without any conflicts. Weights in SONA are non-uniformly quantized with bit-sparse canonical-signed-digit (BS-CSD) representations to reduce multiplications to simpler additions.
    Type: Application
    Filed: July 25, 2022
    Publication date: January 25, 2024
    Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Hun-Seok KIM, David BLAAUW, Dennis SYLVESTER, Yu CHEN, Pierre ABILLAMA, Hyochan AN
  • Patent number: 11879034
    Abstract: The disclosure provides a method of preparing a polymer scaffold including admixing a biotinylated reagent and a polymer to form a biotinylated polymer, subjecting the biotinylated polymer to conditions sufficient to form the polymer scaffold and optionally admixing the polymer scaffold with a streptavidin-modified biomolecule to form a biomolecule-modified polymer scaffold. The disclosure further provides a method of preparing a polymer scaffold including admixing a first click chemistry reagent and a poly(lactic-co-glycolic acid) (PLGA) polymer to form a modified PLGA polymer, subjecting the modified PLGA polymer to conditions sufficient to form the polymer scaffold, and optionally admixing the polymer scaffold with a biomolecule modified to include a second click chemistry reagent that selectively reacts with the first click chemistry reagent, to form a biomolecule-modified polymer scaffold.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: January 23, 2024
    Assignee: REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Lonnie D. Shea, Michael Skoumal, Ryan M. Pearson