Patents Assigned to Regents of the University of New Mexico
  • Patent number: 11491215
    Abstract: Provided herein are antigenic combinations and related compositions, methods and systems for immunizing a host from an infection caused by Francisella bacterium. The antigenic combination comprises an antigenic polysaccharide component from a Francisella bacterium capable of triggering a humoral immune response in an individual, a protein antigen component from the Francisella bacterium capable of triggering a cellular immune response in the individual, and an adjuvant, the antigenic Francisella polysaccharide component, the Francisella protein antigen component and the adjuvant are in a suitable amount to immunize an individual against the Francisella bacterium.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: November 8, 2022
    Assignees: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC, REGENTS OF THE UNIVERSITY OF NEW MEXICO
    Inventors: Nicholas Fischer, Amy Rasley, Terry Wu, Julie Lovchik
  • Patent number: 11201028
    Abstract: Traveling-wave tube amplifiers for high-frequency signals, including terahertz signals, and methods for making a slow-wave structure for the traveling-wave tube amplifiers are provided. The slow-wave structures include helical conductors that are self-assembled via the release and relaxation of strained films from a sacrificial growth substrate.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: December 14, 2021
    Assignees: Wisconsin Alumni Research Foundation, The Regents of the University of New Mexico
    Inventors: Max G. Lagally, Matthew McLean Dwyer, Francesca Cavallo, Daniel Warren van der Weide, Abhishek Bhat
  • Patent number: 10930490
    Abstract: Methods for fabricating thin, high-aspect-ratio Ge nanostructures from high-quality, single-crystalline Ge substrates are provided. Also provided are grating structures made using the methods. The methods utilize a thin layer of graphene between a surface of a Ge substrate, and an overlying resist layer. The graphene passivates the surface, preventing the formation of water-soluble native Ge oxides that can result in the lift-off of the resist during the development of the resist.
    Type: Grant
    Filed: December 26, 2019
    Date of Patent: February 23, 2021
    Assignees: Wisconsin Alumni Research Foundation, The Regents of the University of New Mexico
    Inventors: Max G. Lagally, Francesca Cavallo, Vijay Saradhi Mangu
  • Patent number: 10409274
    Abstract: Described herein are various technologies for monitoring the backplane of a control system and detecting modifications of the control system (e.g., removal of modules, firmware updates, etc.). A monitoring device includes a field programmable gate array (FPGA), and is connected to the backplane of the control system. The monitoring device receives signals, by way of the backplane, that are communicated among modules connected to the backplane. The monitoring device detects a modification to the control system based upon the received signals.
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: September 10, 2019
    Assignees: National Technology & Engineering Solutions of Sandia, LLC, The Regents of the University of New Mexico
    Inventors: Jorge Mario Urrea, Abraham Anthony Clements, Mark Walter Learn, Jim Plusquellic
  • Patent number: 10130916
    Abstract: The present disclosure is directed to biomimetic membranes and methods of manufacturing such membranes that include structural features that mimic the structures of cellular membrane channels and produce membrane designs capable of high selectivity and high permeability or absorptivity. The membrane structure, material and chemistry can be selected to perform liquid separations, gas separation and capture, ion transport and adsorption for a variety of applications.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: November 20, 2018
    Assignees: National Technology & Engineering Solutions of Sandia, LLC, The Regents of the University of New Mexico
    Inventors: Susan Rempe, C. Jeffrey Brinker, David Michael Rogers, Ying-Bing Jiang, Shaorong Yang
  • Patent number: 9110067
    Abstract: A system and method for analyzing a sample of liquid having an NMR signal in response to a magnetic field for the presence of an analyte. Included is an NMR device having a testing section that is adapted to contain a liquid and apply a magnetic field to the liquid. A complex comprised of a conjugate having a field gradient bound to the analyte that is of sufficient magnitude to quench the NMR signal of the liquid when in the test section whereby the presence of the complex is determined by the absence of the NMR signal.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: August 18, 2015
    Assignee: The Regents of the University of New Mexico
    Inventor: Laurel Sillerud
  • Patent number: 9110068
    Abstract: A system and method for analyzing a sample of liquid having an NMR signal in response to a magnetic field for the presence of an analyte. Included is an NMR device having a testing section that is adapted to contain a liquid and apply a magnetic field to the liquid. A complex comprised of a conjugate having a field gradient bound to the analyte that is of sufficient magnitude to quench the NMR signal of the liquid when in the test section whereby the presence of the complex is determined by the absence of the NMR signal. The system and method also include a container having a binding agent therein that has an affinity for the analyte or foreign agent that is used to remove the foreign agent from a patient's blood or plasma. Blood or plasma is shunted through the container to remove or reduce the foreign agent by extracorporeal circulation.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: August 18, 2015
    Assignee: The Regents of the University of New Mexico
    Inventor: Laurel Sillerud
  • Patent number: 8419998
    Abstract: A hollow carbon sphere having a carbon shell and an inner core is disclosed. The hollow carbon sphere has a total volume that is equal to a volume of the carbon shell plus an inner free volume within the carbon shell. The inner free volume is at least 25% of the total volume. In some instances, a nominal diameter of the hollow carbon sphere is between 10 and 180 nanometers.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: April 16, 2013
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., The Regents of the University of New Mexico, Los Alamos National Lab
    Inventors: Claudia C. Luhrs, Jonathan Phillips, Monique N. Richard, Angela Michelle Knapp
  • Patent number: 8057900
    Abstract: Disclosed is a material having a composite particle, the composite particle including an outer shell and a core. The core is made from a lithium alloying material and the outer shell has an inner volume that is greater in size than the core of the lithium alloying material. In some instances, the outer mean diameter of the outer shell is less than 500 nanometers and the core occupies between 5 and 99% of the inner volume. In addition, the outer shell can have an average wall thickness of less than 100 nanometers.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: November 15, 2011
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., Regents of the University of New Mexico
    Inventors: Claudia Luhrs, Monique N. Richard, Aaron Dehne, Jonathan Phillips, Kimber L. Stamm, Paul T. Fanson
  • Publication number: 20110021623
    Abstract: Inhibiting the enzymic action of tyrosinase in the melanocyte prior to, during, or after ultraviolet (UV) radiation exposure, including over-exposure causing erythema, or sunburn, prevents the production of melanin and thereby melanoma. Melanoma can be prevented by using a tyrosinase inhibitor agent that inhibits the enzymic action of tyrosinase to prevent damage and/or death of melanocytes. The inhibitor agent can be applied to the skin or ingested.
    Type: Application
    Filed: September 30, 2010
    Publication date: January 27, 2011
    Applicant: Regents of the University of New Mexico
    Inventors: Graham TIMMINS, Leslie Paige Lund
  • Publication number: 20110006254
    Abstract: A process for making an first material/second material nanocomposite is disclosed. The process can include providing a precursor that contains an electrochemically active and an electrochemically inactive material. Thereafter, the precursor can be suspended in an aerosol gas to produce an aerosol and a plasma having a high field zone can be provided. The aerosol can be passed through the high field zone of the plasma and result in the vaporization of at least part of the precursor in the aerosol. The precursor that has been vaporized in the high field zone is subsequently removed therefrom and allowed to condense into an first material/second material nanocomposite with at least one electrochemically active material.
    Type: Application
    Filed: July 7, 2009
    Publication date: January 13, 2011
    Applicants: Toyota Motor Engineering & Manufacturing North America, Inc., Regents of the University of New Mexico, Los Alamos National Security, LLC
    Inventors: Monique N. Richard, Claudia Luhrs, Jonathan Phillips
  • Publication number: 20100310784
    Abstract: Disclosed is a process for making a composite material that contains structured particles. The process includes providing a first precursor in the form of a dry precursor powder, a precursor liquid, a precursor vapor of a liquid and/or a precursor gas. The process also includes providing a plasma that has a high field zone and passing the first precursor through the high field zone of the plasma. As the first precursor passes through the high field zone of the plasma, at least part of the first precursor is decomposed. An aerosol having a second precursor is provided downstream of the high field zone of the plasma and the decomposed first material is allowed to condense onto the second precursor to from structured particles.
    Type: Application
    Filed: June 9, 2009
    Publication date: December 9, 2010
    Applicants: Toyota Motor Engineering & Manufacturing North America, Inc., Regents of the University of New Mexico, Los Alamos National Lab
    Inventors: Angela Michelle Knapp, Monique N. Richard, Claudia Luhrs, Timothy Blada, Jonathan Phillips
  • Publication number: 20080175292
    Abstract: The present invention includes a laser amplifier and a method of making the same. The laser amplifier of the present invention includes a gain medium layer having a first index of refraction, and a coupling layer optically coupled to the gain medium. In the various embodiments described herein, the coupling layer can have a second index of refraction less than the first index of refraction. The laser amplifier described herein can also include an evanescent layer disposed between the gain medium and the coupling layer. The evanescent layer can have a third index of refraction less than the second index of refraction. The laser amplifier provides high power, efficient laser resonance through frustrated total internal reflection and total internal reflection while simultaneously providing for the minimization of waste heat in the gain medium layer.
    Type: Application
    Filed: August 27, 2007
    Publication date: July 24, 2008
    Applicant: REGENTS OF THE UNIVERSITY OF NEW MEXICO
    Inventor: Mansoor Sheik-Bahae
  • Publication number: 20080025619
    Abstract: The present invention includes methods for the reduction of speckle noise in an image and methods for segmenting an image. Each of the methods disclosed herein includes steps for analyzing the uniformity of a pixel within a plurality of pixels forming a portion of the image and, based on the uniformity of the intensity of the plurality of pixels, adjusting and/or replacing the pixel in order to produce a speckle-noise reduced image, a segmented image, or a segmented and speckle-noise reduced image. The methods of the present invention can employ for example conditional probability density functions, nonlinear estimator functions, convex energy functions and simulated annealing algorithms in the performance of their respective steps.
    Type: Application
    Filed: July 31, 2007
    Publication date: January 31, 2008
    Applicant: REGENTS OF THE UNIVERSITY OF NEW MEXICO
    Inventors: Ousseini Lankoande, Majeed Hayat, Balu Santhanam
  • Publication number: 20040110680
    Abstract: &bgr;-alethine is employed in the differentiation, phenotypic expression, and vitalization of cells, for both in vivo and in vitro applications. Particular applications include the use of &bgr;-alethine in the treatment of immune disorders and diseases, and in the promotion of cell cultures.
    Type: Application
    Filed: August 8, 2003
    Publication date: June 10, 2004
    Applicant: Regents of the University of New Mexico
    Inventors: Galen D. Knight, Paul L. Mann, Terence J. Scallen