Abstract: A sensor is disclosed that provides measurements in multiple degrees of freedom without significantly increasing size, complexity, or cost. The sensor can include a light component in support of a first light source operable to direct a first beam of light, and a second light source operable to direct a second beam of light. The sensor can also include an imaging device that can directly receive the first beam of light and the second beam of light and convert these into electric signals. The imaging device and the light component can be movable relative to one another. The sensor can further include a light location module and/or a position module configured to receive the electric signals and determine locations of the first beam of light, the second beam of light on the imaging device and a relative position of the imaging device and the light component.
Abstract: A camera coupled to a processor is disclosed. The camera is configured to capture images of the subject. The processor is configured to amplify microscopic temporal variations between the images of the subject and generate a profile of at least one microscopic temporally detected physiological variation of the subject. The processor is further configured to compare the profile of the subject to a pre-existing first aggregate profile of a plurality of third-party subjects, said aggregate profile corresponding to the at least one microscopic temporally detected physiological variation of the third-party subjects, the aggregate third-party profile corresponding to a known state of the third-party subjects.