Abstract: A new measurement approach is disclosed that facilitates significantly smaller size, weight, and power (SWaP) spaceborne radar systems that can provide wide swath, high resolution observations. Multiple beams employed in the scan and the complex volume and/or surface backscatter signals of each beam is recorded. Each beam is electronically swept in azimuth where each beam is held at a constant incidence angle over the azimuth sector that covers the swath. Once the sweep is complete, the platform moves forward, by one along track pixel, and the sweep is repeated in order to provide continuous mapping of the volume and surface covered by the swath. Complex volume backscatter is recorded and mapped to each altitude layer to provide full mapping of the atmosphere.
Abstract: The present disclosure relates to digital signal processing architectures, and more particularly to a modular object-oriented digital system architecture ideally suited for radar, sonar and other general purpose instrumentation which includes the ability to self-discover modular system components, self-build internal firmware and software based on the modular components, sequence signal timing across the modules and synchronize signal paths through multiple system modules.
Abstract: The present disclosure relates to digital signal processing architectures, and more particularly to a modular object-oriented digital system architecture ideally suited for radar, sonar and other general purpose instrumentation which includes the ability to self-discover modular system components, self-build internal firmware and software based on the modular components, sequence signal timing across the modules and synchronize signal paths through multiple system modules.
Abstract: A synthetic aperture sonar (SAS) system utilizes a novel timing and pointing method to illuminate and process data from multiple receive channels over one or more elevation swaths. The system further utilizes cross-track interferometry to improve accuracy of three-dimensional mapping.
Abstract: A mobile radar system for visualizing forward looking topography is configured with at least two phased-array antennas to form a forwarding looking phased-array interferometer.
Abstract: A mobile radar system for visualizing forward looking topography is configured with at least two phased-array antennas to form a forwarding looking phased-array interferometer.
Abstract: The present disclosure relates to digital signal processing architectures, and more particularly to a modular object-oriented digital system architecture ideally suited for radar, sonar and other general purpose instrumentation which includes the ability to self-discover modular system components, self-build internal firmware and software based on the modular components, sequence signal timing across the modules and synchronize signal paths through multiple system modules.
Abstract: A mobile radar system for visualizing forward looking topography is configured with at least two phased-array antennas to form a forwarding looking phased-array interferometer.