Patents Assigned to Research Foundation of State of University of New York
  • Patent number: 12247998
    Abstract: A scattering-type scanning near-field optical microscope at cryogenic temperatures (cryo-SNOM) configured with Akiyama probes for studying low energy excitations in quantum materials present in high magnetic fields. The s-SNOM is provided with atomic force microscopy (AFM) control, which predominantly utilizes a laser-based detection scheme for determining the cantilever tapping motion of metal-coated Akiyama probes, where the cantilever tapping motion is detected through a piezoelectric signal. The Akiyama-based cryo-SNOM attains high spatial resolution, good near-field contrast, and is able to perform imaging with a significantly more compact system capable of handling simultaneous demands of vibration isolation, low base temperature, precise nano-positioning, and optical access. Results establish the potential of s-SNOM based on self-sensing piezo-probes, which can easily accommodate near-IR and far-infrared wavelengths and high magnetic fields.
    Type: Grant
    Filed: September 22, 2022
    Date of Patent: March 11, 2025
    Assignees: The Research Foundation for The State University of New York, Yale University
    Inventors: Michael Dapolito, Mengkun Liu, Xinzhong Chen, Adrian Gozar
  • Publication number: 20250064792
    Abstract: The invention provides anelastase inhibitor for use in the promotion of muscle regeneration in the treatment of a myopa-thy, as well as a method for promoting muscle regeneration in a subject with a myopathy, the method comprising providing the subject with a therapeutically effective amount of an elastase inhibitor. Further provided is a pharmaceutical composition comprising anelastase inhibitor for use in the promotion of muscle regeneration in the treatment of a myopathy. Elastase inhibitors may have a protective effect on muscle progenitor cells and their regenerative potential, which aids muscle cell regeneration. By protecting regenerative potential of muscle progenitor cells, elastase inhibitors enable or enhance the grown of new or existing muscle fibres.
    Type: Application
    Filed: September 3, 2024
    Publication date: February 27, 2025
    Applicant: The Research Foundation for The State University of New York
    Inventor: Addolorata PISCONTI
  • Publication number: 20250059795
    Abstract: Systems, methods, and other embodiments described herein relate to multiple three-dimensional (3D) structures formation from a network of circularly-packed structural elements. In one embodiment, a system includes a circularly-packed network of structural elements that form multiple 3D structures. Diameters of the structural elements define a shape of the 3D structures. The circularly-packed network is adaptable to form 1) a first 3D structure and 2) a second 3D structure with a different shape than the first 3D structure. The system also includes a set of joints that connect adjacent structural elements.
    Type: Application
    Filed: August 14, 2023
    Publication date: February 20, 2025
    Applicants: Toyota Motor Engineering & Manufacturing North America, Inc., The Research Foundation for the State University of New York
    Inventors: Yuqing Zhou, Masato Tanaka, Yuyang Song, Xianfeng David Gu, Shikui Chen, Zhou Zhao, Lingfeng Gao
  • Patent number: 12220874
    Abstract: A system and method for measuring characteristics, comprising: a directed energy source having an energy output which changes over time, incident on an object undergoing additive manufacturing; a sensor configured to measure a dynamic thermal response of at least a portion of the object undergoing additive manufacturing proximate to a directed location of the directed energy source over time with respect distance from the directed location; and at least one processor, configured to analyze the measured dynamic thermal response to determine presence of a manufacturing defect in the object undergoing additive manufacturing, before completion of manufacturing.
    Type: Grant
    Filed: May 22, 2023
    Date of Patent: February 11, 2025
    Assignee: The Research Foundation for The State University of New York
    Inventors: Scott N. Schiffres, Matthias Daeumer, Jacob C. Simmons, Arad Azizi
  • Patent number: 12213820
    Abstract: The disclosure is directed to a device that includes a cavity formed by a plurality of rails, the plurality of rails connected to both a first support and a second support, each at predetermined intervals about a circumference of the first support and the second support; and at least one particle detection device operably connected to each rail of the plurality of rails. The disclosure is also directed to a scanner that includes the device, and a processor.
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: February 4, 2025
    Assignee: THE RESEARCH FOUNDATION FOR THE STATE UNIVERSITY OF NEW YORK
    Inventors: Andrew Labella, Amirhossein Goldan, Wei Zhao, Eric Petersen
  • Publication number: 20250034619
    Abstract: Provided herein are nucleic acid-based nanoswitches that can detect specific nucleic acids and other analytes types by for example a simple gel electrophoresis readout. Binding of the target to the nanoswitches induces a conformation change from a linear, open conformation to a looped, closed conformation. These nanoswitches may be used in diagnostic assays such as nucleic acid-based diagnostic assays, to detect, measure and/or purify a variety of targets including low abundance targets.
    Type: Application
    Filed: August 7, 2024
    Publication date: January 30, 2025
    Applicants: The Research Foundation for The State University of New York, Children's Medical Center Corporation
    Inventors: Arun Richard Chandrasekaran, Clinton H. Hansen, Mounir Ahmad Koussa, Kenneth Anders Halvorsen, Wesley Philip Wong
  • Patent number: 12211277
    Abstract: A method for querying data obtained from a distributed sensor network, comprising: receiving sensor data representing an aspect of an environment with a sensor of the distributed sensor network; communicating a representation of the sensor data to a fog node through an automated communication network; determining, by the fog node, a correspondence of a query received through the automated communication network to characteristics of the representation of the sensor data; and selectively communicating, in response to the query, at least one of: the sensor data having the determined characteristics corresponding to the query, an identification of the sensor data having the determined characteristics corresponding to the query, and the data representing the sensor data having the determined characteristics corresponding to the query.
    Type: Grant
    Filed: March 9, 2022
    Date of Patent: January 28, 2025
    Assignee: The Research Foundation for The State University of New York
    Inventors: Yu Chen, Seyed Yahya Nikouei
  • Patent number: 12201753
    Abstract: A substrate subject to degradation at temperatures above 100° C. is coated with a nanostructured ceramic coating having a thickness in excess of 100 nm, formed on a surface of the substrate, wherein a process temperature for deposition of the nanostructured coating does not exceed 90° C. The coating may be photocatalytic, photovoltaic, or piezoelectric. The coating, when moistened and exposed to ultraviolet light or sunlight, advantageously generates free radicals, which may be biocidal, deodorizing, or assist in degradation of surface deposits on the substrate after use. The substrate may be biological or organic, and may have a metallic or conductive intermediate layer.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: January 21, 2025
    Assignee: The Research Foundation for The State University of New York
    Inventor: Junghyun Cho
  • Publication number: 20250019264
    Abstract: A method of treating contaminated water, such as wastewater, with carboxylated cellulose to remove ammonium and nitrogen-containing impurities is claimed. Carboxylated cellulose extracted by nitro-oxidation has negatively-charged functionality and forms an aggregate when exposed to positively-charged impurities in contaminated water. The aggregate, nitrogen-containing impurities, and by-products from the nitro-oxidation process can be isolated to provide a fertilizer or fertilizer component.
    Type: Application
    Filed: September 20, 2024
    Publication date: January 16, 2025
    Applicant: The Research Foundation for The State University of New York
    Inventors: Benjamin S. HSIAO, Priyanka SHARMA, Sunil Kumar SHARMA, Ken I. JOHNSON
  • Patent number: 12194100
    Abstract: The present disclosure relates to processes for preparing functionalized cyclooctenes and the synthetic intermediates prepared thereby.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: January 14, 2025
    Assignees: Tambo, Inc., The Research Foundation of the State University of New York
    Inventors: Jose M. Mejia Oneto, Nathan Yee, Jochem Theodoor Van Herpt, Chun-Min Zeng, Da-Ming Gou, Maksim Royzen
  • Patent number: 12194023
    Abstract: The present invention provides a compound having the structure: wherein R1 is H or a protecting group; R2 and R3 are each independently H, halo, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C1-C6 alkyl-C(O)NHR6, C1-C6 alkyl-C(O)OR6, wherein R6 is H, C1-C6 alkyl, C2-C6 alkenyl or C2-C6 alkynyl, or R2 and R3 combine to form a 3-7 membered cycloalkyl, heterocycloalkyl, aryl or heteroaryl ring; and R4 and R5 are each independently halo.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: January 14, 2025
    Assignee: THE RESEARCH FOUNDATION FOR THE STATE UNIVERSITY OF NEW YORK
    Inventors: Scott Laughlin, Pratik Kumar, Ting Jiang, Wei Huang
  • Patent number: 12195803
    Abstract: Provided herein are methods and materials for detecting and/or treating subject (e.g. a human) having cancer. In some embodiments, methods and materials for identifying a subject as having cancer (e.g., a localized cancer) are provided in which the presence of member(s) of two or more classes of biomarkers are detected. In some embodiments, methods and materials for identifying a subject as having cancer (e.g. a localized cancer) are provided in which the presence of member(s) of at least one class of biomarkers and the presence of aneuploidy are detected. In some embodiments, methods described herein provide increased sensitivity and/or specificity in the detection of cancer in a subject (e.g. a human).
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: January 14, 2025
    Assignees: The Johns Hopkins University, Board of Regents, The University of Texas System, The Research Foundation for The State University of New York
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, Joshua Cohen, Nickolas Papadopoulos, Anne Marie Lennon, Cristian Tomasetti, Yuxuan Wang, Georges Jabboure Netto, Rachel Karchin, Christopher Douville, Samir Hanash, Simeon Springer, Arthur P. Grollman, Kathleen Dickman
  • Publication number: 20250009658
    Abstract: A composition of an omega-3 polyunsaturated fatty acid (PUFA)-taxoid conjugate encapsulated in an oil-in-water nanoemulsion (NE) drug delivery system. A method of treating cancer by administering an effective amount of a pharmaceutical composition including a PUFA-taxoid conjugate encapsulated in an oil-in-water NE drug delivery system to a subject in need of treatment, and treating cancer. A method of overcoming multidrug resistance by exposing a multidrug resistant cell to an effective amount of a pharmaceutical composition including an omega-3 polyunsaturated fatty acid (PUFA)-taxoid conjugate encapsulated in an oil-in-water NE drug delivery system, and inducing the death of the multidrug resistant cell. A method of eliminating a cancer stem cell. Methods of reducing stemness of a cancer stem cell, retaining drug in the body, and providing a slower release profile.
    Type: Application
    Filed: July 16, 2024
    Publication date: January 9, 2025
    Applicants: TargaGenix, Inc., Research Foundation for State University New York, Northeastern University
    Inventors: James E. EGAN, Iwao OJIMA, Mansoor M. AMIJI, Galina Ivanovna BOTCHKINA
  • Patent number: 12189449
    Abstract: A method for controlling a data center, comprising a plurality of server systems, each associated with a cooling system and a thermal constraint, comprising: a concurrent physical condition of a first server system; predicting a future physical condition based on a set of future states of the first server system; dynamically controlling the cooling system in response to at least the input and the predicted future physical condition, to selectively cool the first server system sufficient to meet the predetermined thermal constraint; and controlling an allocation of tasks between the plurality of server systems to selectively load the first server system within the predetermined thermal constraint and selectively idle a second server system, wherein the idle second server system can be recruited to accept tasks when allocated to it, and wherein the cooling system associated with the idle second server system is selectively operated in a low power consumption state.
    Type: Grant
    Filed: November 5, 2023
    Date of Patent: January 7, 2025
    Assignee: The Research Foundation for The State University of New York
    Inventor: Kanad Ghose
  • Patent number: 12186428
    Abstract: A composition of an omega-3 polyunsaturated fatty acid (PUFA)-taxoid conjugate formulated in an oil-in-water nanoemulsion (NE) drug delivery system in combination with an immune-oncology (IO) agent to enhance therapeutic efficacy in refractory cancers, such as PDAC. A method of treating cancer, by administering an effective amount of a pharmaceutical composition including an omega03 PUFA-taxoid conjugate in combination with an IO agent encapsulated in an NE drug delivery system to a subject in need of treatment, and treating cancer.
    Type: Grant
    Filed: November 14, 2022
    Date of Patent: January 7, 2025
    Assignees: TargaGenix, Inc., The Research Foundation for the State University of New York, Northeastern University
    Inventors: James E. Egan, Mansoor M. Amiji, Iwao Ojima
  • Publication number: 20250007700
    Abstract: A quantum-key distributed (QKD)-enabled communication architecture it devises for networked microgrids (NMGs). A real-time QKD-enabled NMGs testbed built in an RTDS environment, and a novel two-level key pool sharing (TLKPS) strategy it designs to improve the system resilience against cyberattacks. In the QKD-based microgrid testbed design there is used a real-time power system simulator, i.e., RTDS, including the QKD modeling, hardware connection, communication network design, and QKD integration. By integrating QKD features into a real-time microgrid simulator, this testbed offers a flexible and programmable testing environment for evaluating the performance of QKD-enabled microgrids under a variety of scenarios.
    Type: Application
    Filed: July 19, 2022
    Publication date: January 2, 2025
    Applicants: THE RESEARCH FOUNDATION FOR THE STATE UNIVERSITY OF NEW YORK, UNIVERSITY OF CONNECTICUT
    Inventors: Peng ZHANG, Zefan TANG, Walter KRAWEC
  • Patent number: 12178524
    Abstract: A surgical system is provided. The surgical system includes a camera operable to capture images and/or video. A projector is operable to project light, and a controller is communicatively coupled with the camera and the projector. The controller is operable to track movement of bone in real-time during surgery based on the images and/or video captured by the camera, and control the projector to project the light including a cutting line on the bone to indicate a cutting plane for cutting the bone during surgery.
    Type: Grant
    Filed: March 8, 2023
    Date of Patent: December 31, 2024
    Assignees: Navisect, Inc., The Research Foundation for The State University of New York_
    Inventors: Fazel Khan, Michael Bielski, Jafar Khan, Imin Kao, Guangyu He
  • Patent number: 12178846
    Abstract: The disclosure provides methods of treating a condition of the retina by administering an inhibitor of connexin 36 and/or an inhibitor of connexin 45 to a subject with a retinal condition. This disclosure further provides compositions for the treatment of a retinal condition which include an inhibitor of connexin 36 and/or an inhibitor of connexin 45.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: December 31, 2024
    Assignee: The Research Foundation for The State University of New York
    Inventor: Stewart Bloomfield
  • Patent number: 12184769
    Abstract: Quantum network devices, systems, and methods are provided to enable long-distance transmission of quantum bits (qubits) for applications such as Quantum Key Distribution (QKD), entanglement distribution, and other quantum communication applications. Such systems and methods provide for separately storing first, second, third, and fourth photons, wherein the first and second photons and the third and fourth photons are respective first and second entangled photon pairs, triggering a synchronized retrieval of the stored first, second, third, and fourth photons such that the first photon is propagated to a first node, the second and third photons are propagated to a second node, and the fourth photon is propagated to a third node, and creating a new entangled pair comprising the first and fourth photons at the first and third nodes to transmit quantum information.
    Type: Grant
    Filed: September 8, 2023
    Date of Patent: December 31, 2024
    Assignees: The Research Foundation for The State University of New York, Qunnect, Inc.
    Inventors: Eden Figueroa, Mehdi Namazi, Mael Flament, Sonali Gera
  • Publication number: 20240422999
    Abstract: A sensor including a layer of amorphous selenium (a-Se) and at least one charge blocking layer is formed by depositing the charge blocking layer over a substrate prior to depositing the amorphous selenium, enabling the charge blocking layer to be formed at elevated temperatures. Such a process is not limited by the crystallization temperature of a-Se, resulting in the formation of an efficient charge blocking layer, which enables improved signal amplification of the resulting device. The sensor can be fabricated by forming first and second amorphous selenium layers over separate substrates, and then fusing the a-Se layers at a relatively low temperature.
    Type: Application
    Filed: June 12, 2024
    Publication date: December 19, 2024
    Applicant: The Research Foundation for The State University of New York
    Inventors: James Scheuermann, Wei Zhao