Patents Assigned to Research Foundation of the University of Central Florida, Inc
  • Patent number: 7419516
    Abstract: Novel nano-sized rare earth metal oxide prepared from aqueous reverse micelles is provided. The engineered nanoparticles have large surface area to volume ratios, and sufficient oxygen vacancies on the surface of each particle, so that when mixed with carbon-containing combustible fuels, the particles remain suspended indefinitely; there is a significant reduction in soot and other by-products of combustion, an increase in engine efficiency and less fuel consumed per mile traveled in various vehicles, such as, but not limited to, automobiles, defense vehicles, airplanes, ships and other surface or air-bearing vehicles.
    Type: Grant
    Filed: May 14, 2004
    Date of Patent: September 2, 2008
    Assignee: Research Foundation of the University of Central Florida, Inc.
    Inventors: Sudipta Seal, Eric L. Petersen, Sameer Deshpande, Swanand Patil, Suresh Chandra Kuiry
  • Patent number: 7414690
    Abstract: Structures, devices, systems and methods of using fringe field switching mode liquid crystal display (LCD) in which the electrodes have a trapezoidal structure. The disclosed fringe field switching mode LCD includes common electrodes and pixel electrodes arranged on a back substrate to produce a fringe field. Each electrode is comprised of alternating sections of main bone and trapezoidal electrode.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: August 19, 2008
    Assignees: Research Foundation of the University of Central Florida, Inc., Toppoly Optelectronics Corp.
    Inventors: Ruibo Lu, Qi Hong, Shin-Tson Wu
  • Patent number: 7408601
    Abstract: Inhomogeneous concentrated polymer network with approximately 90° twisted nematic liquid crystal (TN-LC) is used for fabricating lens and prisms. For forming a positive lens, the approximately 90° TN-LC polymer network concentration can gradually decrease from the center to the side edges. For forming a negative lens, the approximately 90° TN-LC polymer network concentration can gradually increase from the center to the side edges. The lens can be created by ultra violet (UV) light exposure to patterned photo masks. The lens can be tuned by applying voltage above the threshold voltage to the polymer network. The inhomogeneous 90° TN-LC polymer network can also be used in Fresnel lens and prisms. Applications of the invention can be used for micro lens, array, optical communication, micro-optics, adaptive optics and beam steering.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: August 5, 2008
    Assignee: Research Foundation of the University of Central Florida, Inc.
    Inventors: Yuhua Huang, Hongwen Ren, Xinyu Zhu, Shin-Tson Wu
  • Patent number: 7394842
    Abstract: A volume Bragg laser including a resonator comprising photo-thermo-refractive (PTR) volume diffractive elements that can be used in a laser emitting window of transparency of PTR glass to provide control of the lasers spectral and angular parameters, and methods, devices, apparatus and systems related thereto. The high efficiency volume Bragg gratings recorded in photo-thermo-refractive (PTR) glass preferably has an absolute diffraction efficiency exceeding approximately 95% in transmitting and reflecting modes is used for selection of a transverse and longitudinal mode for thermal, optical and mechanical stabilization of the volume Bragg lasers and coherent coupling of different lasers. Robustness, compactness, thermal and laser stability along with the ability to place several elements in the same space allows the use of sophisticated optical system according to the invention in fields of military lasers, optical communications, data storage and processing, and the like.
    Type: Grant
    Filed: April 26, 2005
    Date of Patent: July 1, 2008
    Assignee: Research Foundation of the University of Central Florida, Inc.
    Inventors: Leonid B. Glebov, Vadim I. Smirnov, George Venus
  • Patent number: 7358218
    Abstract: Methods, compositions and kits for masking and subsequent removal of oil, grease, rust and other stains from a variety of rough solid surfaces, including, but not limited to stone, concrete, asphalt, stucco brick, and ceramic. The methods include coating the stains with an opaque or translucent thin film of a composition that makes the stain practically indistinguishable against the background, exposing the coated stain to the elements, such as, sunlight, air, moisture, resulting in spontaneous transformation, degradation and subsequent removal of the stains from the solid surfaces. The compositions include a photocatalyst by itself or the photocatalyst combined with at least one of, a sensitizer, a dopant, a mediator, a co-reagent, a pigment and a binder. The role of a photocatalyst is to produce highly reactive species or radicals and initiate the degradation of a stain upon exposure to elements, such as, sunlight, air and ambient humidity. Artificial light sources can be used instead of sunlight.
    Type: Grant
    Filed: June 3, 2005
    Date of Patent: April 15, 2008
    Assignee: Research Foundation of the University of Central Florida, Inc.
    Inventor: Nazim Z. Muradov
  • Patent number: 7332146
    Abstract: Processes, methods, systems and devices for zero emission liquid hydrogen production directly from a variety of methane sources, such as natural gas and landfill gas, are disclosed. Five embodiments of plant designs for liquid hydrogen production are presented. The embodiments combine hydrogen production and liquefaction into a single process to produce liquid hydrogen directly via methane containing gases; thus, eliminating the conventional technology of pressure swing adsorption process for gas mixture separation. The innovative process can be applied to produce high purity liquid hydrogen with no carbon dioxide emission to the atmosphere; and can also co-produce highly pure solid carbon and liquid carbon dioxide as by-products for industrial application.
    Type: Grant
    Filed: June 8, 2005
    Date of Patent: February 19, 2008
    Assignee: Research Foundation of the University of Central Florida, Inc.
    Inventors: Cunping Huang, Nazim Muradov, Ali T. Raissi
  • Patent number: 7282514
    Abstract: Fluorescent dyes and probes are key components in multiphoton based fluorescence microscopy imaging of biological samples. In order to address the demand for better performing dyes for two-photon based imaging, a new series of reactive fluorophores tailored for multiphoton imaging has been disclosed. These fluorophores are based upon the fluorene ring system, known to exhibit high fluorescence quantum yields, typically >0.7, and possess high photostability. They have been functionalized with moieties to act, e.g., as efficient amine-reactive fluorescent probes for the covalent attachment onto, e.g., proteins and antibodies. The synthesis and the single-photon spectral characteristics, as well as measured two-photon absorption cross sections of the reactive fluorophores in solution are presented. Spectral characterizations of bovine serum albumin (BSA) conjugated with the new reactive probe is presented.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: October 16, 2007
    Assignee: Research Foundation of The University of Central Florida, Inc.
    Inventors: Kevin D. Belfield, Katherine J. Schafer
  • Patent number: 7270983
    Abstract: This invention relates to a body fluids identification method and kit. A parallel, multiplex reverse transcription-polymerase chain reaction (RT-PCR) assay for the definitive identification of body fluids commonly encountered in forensic casework analysis, namely blood, saliva, semen, and vaginal secretions. The methodology is based on gene expression profiling analysis in which the body fluid-specific genes are identified by detecting the presence of appropriate messenger RNA species. Gene-specific primers are labeled with fluorescent dyes, separated and subjected to laser induced fluorescence for identification of body fluid-specific genes present in a sample stain.
    Type: Grant
    Filed: February 3, 2005
    Date of Patent: September 18, 2007
    Assignee: Research Foundation of The University of Central Florida, Inc.
    Inventors: Jack Ballantyne, Jane Juusola
  • Patent number: 7271865
    Abstract: A general film compensated reflective twisted nematic liquid crystal display, device, system and method with phase compensation film set to compensate the residual phase retardation of the liquid crystal in the voltage-on state to increase the contrast ratio at a lower operating voltage and decrease the color dispersion when used in reflective and transflective liquid crystal displays. The phase compensation film set is selected based on the twist angle and the residual retardation of the liquid crystal layer, wherein the compensation film set has an effective film phase retardation value and effective polarizer angle to cancel the total residual phase to obtain an excellent dark state for achieving the high contrast ratio.
    Type: Grant
    Filed: December 2, 2004
    Date of Patent: September 18, 2007
    Assignees: Research Foundation of the University of Central Florida, Inc., Toppoly Optoeleetronics Corps.
    Inventors: Xinyu Zhu, Shin-Tson Wu
  • Patent number: 7253287
    Abstract: Fluorescent dyes and probes are key components in multiphoton based fluorescence microscopy imaging of biological samples. In order to address the demand for better performing dyes for two-photon based imaging, a new series of reactive fluorophores tailored for multiphoton imaging has been disclosed. These fluorophores are based upon the fluorene ring system, known to exhibit high fluorescence quantum yields, typically >0.7, and possess high photostability. They have been functionalized with moieties to act, e.g., as efficient amine-reactive fluorescent probes for the covalent attachment onto, e.g., proteins and antibodies. The synthesis and the single-photon spectral characteristics, as well as measured two-photon absorption cross sections of the reactive fluorophores in solution are presented. Spectral characterizations of bovine serum albumin (BSA) conjugated with the new reactive probe is presented.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: August 7, 2007
    Assignee: Research Foundation of The University of Central Florida, Inc.
    Inventors: Kevin D. Belfield, Katherine J. Schafer
  • Patent number: 7210910
    Abstract: Twisted ceiling fan blades for low, medium and high speed operation of less than approximately 250 rpm. The novel blades twisted blades can be configured for 60? and 64? diameter fans, and have less blades (3 for example) than conventional flat type bladed fans having 4, 5 blades and have greater air flow and less power draw results than the conventional flat 54 inch fans. Any of the novel twisted blades of 54?, 60? and 64? can be run at reduced speeds, drawing less Watts than conventional fans and still perform better with more air flow and less problems than conventional flat type conventional blades.
    Type: Grant
    Filed: December 31, 2004
    Date of Patent: May 1, 2007
    Assignee: Research Foundation of the University of Central Florida, Inc.
    Inventors: Danny S. Parker, Guan Hua Su, Bart D. Hibbs
  • Patent number: 7197105
    Abstract: Methods, systems and processes for providing efficient, accurate and exact image reconstruction using portable and easy to use C-arm scanning devices and rotating gantries, and the like. The invention can provide exact convolution-based filtered back projection (FBP) image reconstruction by combining a curved scan of the object and a line scan of the object. The curved scan can be done before or after the line scan. The curved scan can be less than or greater than a full circle about an object being scanned.
    Type: Grant
    Filed: April 23, 2004
    Date of Patent: March 27, 2007
    Assignee: Research Foundation of the University of Central Florida, Inc.
    Inventor: Alexander Katsevich
  • Patent number: 7142369
    Abstract: A liquid-filled variable focus lens cell is disclosed. The liquid lens cell consists of four parts: a clear distensible membrane, a transparent wall member, liquid with a fixed volume stored in lens cell chamber, and an annular periphery sealing ring. The inner surfaces of the annular sealing ring are sealed with distensible membrane. The radius of the annular sealing ring is changeable, similar to a conventional iris diaphragm. By tuning the radius of the annular sealing ring, the stored liquid in the lens cell will be redistributed, thus change the curvature of the distensible membrane. Therefore, the liquid lens cell can cause light to converge or diverge. The liquid filled lens can be operated mechanically or automatically.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: November 28, 2006
    Assignee: Research Foundation of the University of Central Florida, Inc.
    Inventors: Shin-Tson Wu, Hongwen Ren
  • Patent number: 7095772
    Abstract: Methods, devices and systems for generating ultrashort optical linear chirped pulses with very high power by amplifying the pulses so that their temporal duration is longer than the storage time of the amplifying medium. The additional gain factor is related to the ratio of the storage time to the stretched pulse. A preferred embodiment connects a mode locked laser source that generates optical pulses whose duration is stretched with a chirped fiber Bragg grating. Embodiments include methods, devices and systems causing an extreme chirped pulse amplifier (XCPA) effect in an oscillator.
    Type: Grant
    Filed: April 21, 2004
    Date of Patent: August 22, 2006
    Assignee: Research Foundation of the University of Central Florida, Inc.
    Inventors: Peter J. Delfyett, Kyungbum Kim, Bojan Resan
  • Patent number: 7079203
    Abstract: Inhomogeneous concentrated polymer network with approximately 90° twisted nematic liquid crystal (TN-LC) is used for fabricating lens and prisms. For forming a positive lens, the approximately 90° TN-LC polymer network concentration can gradually decrease from the center to the side edges. For forming a negative lens, the approximately 90° TN-LC polymer network concentration can gradually increase from the center to the side edges. The lens can be created by ultra violet (UV) light exposure to patterned photo masks. The lens can be tuned by applying voltage above the threshold voltage to the polymer network. The inhomogeneous 90° TN-LC polymer network can also be used in Fresnel lens and prisms. Applications of the invention can be used for micro lens, array, optical communication, micro-optics, adaptive optics and beam steering.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: July 18, 2006
    Assignee: Research Foundation of the University of Central Florida, Inc.
    Inventors: Yuhua Huang, Hongwen Ren, Xinyu Zhu, Shin-Tson Wu
  • Patent number: 7009773
    Abstract: Extremely compact and light-weight optical systems, apparatus, devices and methods to image miniature displays. Such systems include, for example, head-mounted projection displays (HMPD), head-mounted displays (HMDs), and cameras for special effects, compact microscopes and telescopes as well as applications in which magnification and compactness are design criteria. The invention includes an ultra-compact imaging system based on microlenslet arrays and demonstrates that such a system can achieve an object-to-image distance as low as approximately 1.7 mm. with the usage of commercially available microlenslet arrays. The replacement of bulk macro-optical system by multi-aperture micro-optics is achieved.
    Type: Grant
    Filed: August 3, 2004
    Date of Patent: March 7, 2006
    Assignee: Research Foundation of the University of Central Florida, Inc.
    Inventors: Vesselin I. Chaoulov, Ricardo F. Martins, Jannick P. Rolland
  • Patent number: D539413
    Type: Grant
    Filed: June 3, 2005
    Date of Patent: March 27, 2007
    Assignee: Research Foundation of the University of Central Florida, Inc.
    Inventors: Danny S. Parker, John Sherwin, Bart Hibbs
  • Patent number: D555782
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: November 20, 2007
    Assignee: Research Foundation of the University of Central Florida, Inc.
    Inventors: Danny S. Parker, John Sherwin, Bart Hibbs
  • Patent number: D566829
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: April 15, 2008
    Assignee: Research Foundation of the University of Central Florida, Inc.
    Inventors: Danny S. Parker, John Sherwin, Bart Hibbs
  • Patent number: RE42184
    Abstract: Two, three dimensional color displays having uniform dispersion of red, green and blue visible light emitting micron particles. Pumping at approximately 976 nm can generate green and red colors having an approximately 4% limit efficiency. One source can generate three colors with approximately limit efficiency. Modulators, scanners and lens can move and focus laser beams to different pixels forming two dimensional color images. Displays can be formed from near infrared source beams that are simultaneously split and modulated with micro electro mechanical systems, spatial light modulators, liquid crystal displays, digital micromirrors, digital light projectors, grating light valves, liquid crystal silicon devices, polysilicon LCDs, electron beam written SLMs, and electrically switchable bragg gratings. Pixels containing: Yb,Tm:YLF can emit blue light, Yb,Er(NYF) can emit green light, and Yb,Er:KYF and Yb,Ef:YF3 can emit red light.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: March 1, 2011
    Assignee: Research Foundation of the University of Central Florida, Inc.
    Inventors: Michael Bass, Jason Eichenholz, Alexandra Rapaport