Patents Assigned to Research Institute of Petroleum Processing,
  • Patent number: 11517886
    Abstract: A modified Y-type molecular sieve has a modifying metal content of about 0.5-6.3 wt % calculated on the basis of an oxide of the modifying metal and a sodium content of no more than about 0.5 wt % calculated on the basis of sodium oxide. The modifying metal is magnesium and/or calcium. The modified Y-type molecular sieve has a proportion of non-framework aluminum content to the total aluminum content of no more than about 20%, a total pore volume of about 0.33-0.39 ml/g, a proportion of the pore volume of secondary pores having a pore size of 2-100 nm to the total pore volume of about 10-25%, a lattice constant of about 2.440-2.455 nm, a lattice collapse temperature of not lower than about 1040° C., and a ratio of B acid to L acid in the total acid content of no less than about 2.30.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: December 6, 2022
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Shuai Yuan, Lingping Zhou, Huiping Tian, Zhenyu Chen, Weilin Zhang, Hao Sha
  • Patent number: 11518684
    Abstract: A NaY molecular sieve with an aluminum-rich surface is prepared using a process that includes the steps of: a. mixing a directing agent and a first silicon source to obtain a first mixture, wherein the directing agent has a molar composition of Na2O:Al2O3:SiO2:H2O=(6-25):1:(6-25):(200-400); b. mixing the first mixture obtained in the step a with a second silicon source, an aluminum source and water to obtain a second mixture; c. carrying out hydrothermal crystallization on the second mixture obtained in the step b, and collecting a solid product. Calculated as SiO2, the weight ratio of the first silicon source to the second silicon source is 1:(0.01-12). The NaY molecular sieve has larger aluminum distribution gradient from the surface to the center of the particle than the conventional molecular sieve.
    Type: Grant
    Filed: May 27, 2019
    Date of Patent: December 6, 2022
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Qiang Fu, Yongxiang Li, Chengxi Zhang, Hexin Hu, Xuhong Mu, Xingtian Shu
  • Patent number: 11512259
    Abstract: A process for producing propylene and a low-sulfur fuel oil component, comprising the steps of: i) contacting a hydrocarbon-containing feedstock oil with a catalytic conversion catalyst for reaction under effective conditions in a catalytic conversion reactor in the absence of hydrogen to obtain a reaction product comprising propylene; ii) separating the reaction product from step i) to obtain a catalytic cracking distillate oil, and iii) subjecting the catalytic cracking distillate oil to hydrodesulfurization to obtain a low-sulfur hydrogenated distillate oil suitable for use as a fuel oil component. The process can greatly improve the propylene selectivity and propylene yield while producing more fuel oil components, significantly reduce the yield of dry gas and coke, and thus has better economic and social benefits.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: November 29, 2022
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Youhao Xu, Xin Wang, Yanfen Zuo, Shouye Cui, Xuhui Bai, Xinyu Xie
  • Publication number: 20220372385
    Abstract: Described are a process and a system for hydrotreating a deoiled asphalt. The process includes: (2) introducing a deoiled asphalt and an aromatics-containing stream into a first reaction unit for hydrogenation reaction, wherein the first reaction unit comprises a mineral-rich precursor material and/or a hydrogenation catalyst, and the first reaction unit is a fixed bed hydrogenation unit; (21) fractionating the liquid-phase product from the first reaction unit to provide a first light component and a first heavy component; (31) introducing the first light component into a second reaction unit for reaction, to provide a gasoline component, a diesel component and/or a BTX feedstock component; and (32) introducing the first heavy component to a delayed coking unit for reaction; or using the first heavy component as a low sulfur ship fuel oil component.
    Type: Application
    Filed: October 30, 2020
    Publication date: November 24, 2022
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Qinghe YANG, Shuling SUN, Dawei HU, Chuanfeng NIU, Yanzi JIA, Lishun DAI, Zhen WANG, Anpeng HU, Liang REN, Dadong LI
  • Patent number: 11504702
    Abstract: A modified Y-type molecular sieve having a calcium content of about 0.3-4 wt % calculated on the basis of calcium oxide, a rare earth content of about 2-7 wt % calculated on the basis of rare earth oxide, and a sodium content of no more than about 0.5 wt % calculated on the basis of sodium oxide. The modified Y-type molecular sieve has a total pore volume of about 0.33-0.39 ml/g, a proportion of the pore volume of secondary pores having a pore size of 2-100 nm to the total pore volume of about 10-25%, a lattice constant of about 2.440-2.455 nm, a proportion of non-framework aluminum content to the total aluminum content of no more than about 20%, a lattice collapse temperature of not lower than about 1050° C., and a ratio of B acid to L acid in the total acid content of no less than about 2.30.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: November 22, 2022
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Shuai Yuan, Lingping Zhou, Huiping Tian, Hao Sha, Zhenyu Chen, Weilin Zhang
  • Publication number: 20220340827
    Abstract: Described are an intelligence system and process for material blending in the gasification. The system includes a subsystem for material blending in the gasification, wherein the subsystem for material blending in the gasification includes a raw material property rapid analysis module, for obtaining raw material property parameters of raw materials according to characteristic spectral line intensities of in-furnace raw materials; a blended material property prediction module, for establishing a prediction model, and predicting blended material property parameters by means of the prediction model according to raw material property parameters and raw material proportions; a blending scheme optimization module, for establishing an optimization model, and obtaining an optimized blending scheme by means of the optimization model according to blended material property parameters; a blending scheme economy evaluation module, for outputting a blending scheme with the optimum technical economy.
    Type: Application
    Filed: September 24, 2020
    Publication date: October 27, 2022
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Fangjie WANG, Shuqing WANG, Dachuan WANG, Guofu XIA, Longpeng CUI
  • Patent number: 11465953
    Abstract: A method for purification of a styrene-containing feedstock includes steps of introducing the styrene-containing feedstock into the middle of an extractive distillation column, and a solvent for the extractive distillation into the upper part of the column; discharging a raffinate oil from the top of the column, and a rich solvent rich in styrene from the bottom of the column. The rich solvent is then introduced into the middle of the solvent recovery column for vacuum distillation to obtain a crude styrene from the top of the solvent recovery column, and a lean solvent is discharged from the bottom of the solvent recovery column and recycled to the upper part of the extractive distillation column. A portion of the rich solvent is sent to a solvent purification zone for a liquid-liquid extraction using water to obtain a mixture of a styrene polymer and styrene.
    Type: Grant
    Filed: January 9, 2019
    Date of Patent: October 11, 2022
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Wencheng Tang, Longsheng Tian, Ming Zhao, Siliang Gao, Nan Yang, Siyuan Qie, Zhifeng Bian
  • Patent number: 11439989
    Abstract: Disclosed is a hydrofining catalyst comprising: an inorganic refractory component comprising a first hydrodesulfurization catalytically active component in a mixture with at least one oxide selected from the group consisting of alumina, silica, magnesia, calcium oxide, zirconia and titania; a second hydrodesulfurization catalytically active component; and an organic component comprising a carboxylic acid and optionally an alcohol. The hydrofining catalyst of the present application shows improved performance in the hydrofining of distillate oils. Also disclosed are a hydrofining catalyst system comprising the hydrofining catalyst, a method for preparing the catalyst and catalyst system, and a process for the hydrofining of distillate oils using the catalyst or catalyst system.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: September 13, 2022
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Wenbin Chen, Le Zhang, Xiangyun Long, Hong Nie, Mingfeng Li, Dadong Li, Qinghe Liu, Xueyan Ju
  • Patent number: 11440982
    Abstract: An ester polymer has a structure represented by the following formula (I): T represents the backbone of the ester polymer; the group B is each independently selected from O or S; the group R each independently represents C1-10 hydrocarbylene group; the group A is each independently selected from O, S or NR?; the group R? each independently represents C1-10 hydrocarbylene group; the group Nb is each independently selected from H or —R??—B?H, wherein at least one of the two Nb on the same nitrogen atom is —R??—B?H; the group R? is each independently selected from H or C1-10 hydrocarbyl group; the group R?? each independently represents C1-10 hydrocarbylene group; the group B? is each independently selected from O or S; each y independently represents an integer between 1 and 6; and m is an integer between 1 and 10.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: September 13, 2022
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING. SINOPEC
    Inventors: Cheng Li, Songbai Tian, Xiaowei Wang, Qundan Zhang, Hu Li, Xinyu Zhu
  • Patent number: 11434466
    Abstract: The present invention provides a process of cultivating microalgae and a joint method of same jointed with denitration. During the microalgae cultivation, EM bacteria is added into the microalgae suspension. In the nutrient stream for cultivating microalgae, at least one of the nitrogen source, phosphorus source and carbon source is provided in the form of a nutrient salt. During the cultivation, the pH of the microalgae suspension is adjusted with nitric acid and/or nitrous acid. The joint method includes (1) a step of cultivating microalgae; (2) a separation step of separating a microalgae suspension obtained from step (1) into a wet microalgae (microalgae biomass) and a residual cultivation solution; and (3) a NOx absorbing/immobilizing step of denitrating an industrial waste gas with the residual cultivation solution obtained from step (2). The nutrient stream absorbed with NOx obtained from step (3) is used to provide nitrogen source to the microalgae cultivation of step (1).
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: September 6, 2022
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Junfeng Rong, Xuhua Zhou, Lin Cheng, Junying Zhu, Xugeng Huang, Baoning Zong
  • Patent number: 11427773
    Abstract: Disclosed is a catalytic cracking process for producing isobutane and/or light aromatics in high yield, comprising the steps of: a) providing a catalytic cracking feedstock oil having a polycyclic naphthene content of greater than about 25 wt %; b) subjecting the catalytic cracking feedstock oil to a first catalytic cracking reaction and a second catalytic cracking reaction sequentially under different reaction conditions to obtain a catalytic cracking product; c) separating the resulting catalytic cracking product to obtain a liquefied gas fraction comprising isobutane and a gasoline fraction comprising light aromatics; and d) optionally, recovering isobutane from the liquefied gas fraction and/or recovering light aromatics from the gasoline fraction. The process can enable the production of isobutane and/or light aromatics in high yield.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: August 30, 2022
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Youhao Xu, Xin Wang, Yuying Zhang, Tao Liu, Xuhui Bai, Lishun Dai, Zhigang Zhang, Jialin Liang, Nan Jiang
  • Patent number: 11365360
    Abstract: A process for converting inferior feedstock oil includes several steps. In step a) the inferior feedstock oil is subjected to a low severity hydrogenation reaction. The reaction product is separated to produce a gas, a hydrogenated naphtha, a hydrogenated diesel and a hydrogenated residual oil. In step b) the hydrogenated residual oil obtained in step a) is subjected to a first catalytic cracking reaction, the reaction product is separated to produce a first dry gas, a first LPG, a first gasoline, a first diesel and a first FCC-gas oil. In step c) the first FCC-gas oil obtained in step b) is subjected to a hydrogenation reaction of gas oil, the reaction product is separated to produce a hydrogenated gas oil, and in step d) the hydrogenated gas oil obtained in step c) is subjected to the first catalytic cracking reaction of step b) or a second catalytic cracking reaction.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: June 21, 2022
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Youhao Xu, Tao Liu, Xin Wang, Lishun Dai, Tian Lan, Hong Nie, Dadong Li
  • Patent number: 11359036
    Abstract: The present invention provides an amine-based polymer, a preparation process thereof and use thereof. The amine-based polymer of the present invention is characterized in that said amine-based polymer contains a polymer main chain, and a structure represented by formula (I) is attached onto the polymer main chain, and said structure is attached to the polymer main chain via an attaching end present in at least one of Group G, Group G? and Group A in the structure, wherein each of the groups is defined as in the description. The amine-based polymer of the present invention is suitably used as a detergent, particularly suitably used as a fuel detergent. The amine-based polymer of the present invention is useful as a fuel detergent, and has an extraordinarily excellent detergency and dispersion properties.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: June 14, 2022
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Jianrong Zhang, Zuoxin Huang
  • Publication number: 20220152534
    Abstract: The present invention provides an oil slurry filter, a filter unit including the oil slurry filter, a multiple-filter system including the oil slurry filter, and a multiple-stage filter system including the oil slurry filter. Due to the use of the filter component of flexible texture in the oil slurry filter of the present invention, the problems that the filter material is easily blocked by high-viscosity colloidal impurities, the regeneration efficiency of the filter is poor and the filtration efficiency is low are solved, and it is possible to make the backwash treatment of the filter residue more convenient and improve the regeneration efficiency of the filter. The present invention also provides a filtering process using the oil slurry filter to ensure long-term stable operation of the oil slurry filtering process.
    Type: Application
    Filed: February 20, 2020
    Publication date: May 19, 2022
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC, SUN-CENTRAL (SHANGHAI) MARKETING AND SERVICE CO., LTD
    Inventors: Zhihai HU, Yong HAN, Chuanfeng NIU, Lingping WANG, Fa LIU, Tan CHEN, Zhicai SHAO, Jinshan XIAO, Zhonghuo DENG, Shasha LI, Lishun DAI, Wei YE, Qiang FANG, Wenjing XU
  • Patent number: 11318444
    Abstract: A desulfurization catalyst includes at least: 1) a sulfur-storing metal oxide, 2) an inorganic binder, 3) a wear-resistant component, and 4) an active metal component. The sulfur-storing metal is one or more of a metal of Group IIB of the periodic table, a metal of Group VB of the periodic table, and a metal of Group VIB of the periodic table, e.g., zinc. The desulfurization catalyst has a good stability and a high desulfurization activity.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: May 3, 2022
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Jun Long, Shuandi Hou, Wei Lin, Ye Song, Huiping Tian
  • Patent number: 11224859
    Abstract: A carbon-coated transition metal nanocomposite material includes carbon-coated transition metal particles having a core-shell structure. The shell layer of the core-shell structure is a graphitized carbon layer doped with oxygen and/or nitrogen, and the core of the core-shell structure is a transition metal nanoparticle. The nanocomposite material has a structure rich in mesopores, is an adsorption/catalyst material with excellent performance, can be used for catalyzing various hydrogenation reduction reactions, or used as a catalytic-oxidation catalyst useful for the treatment of volatile organic compounds in industrial exhaust gases.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: January 18, 2022
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Junfeng Rong, Genghuang Wu, Jingxin Xie, Mingsheng Zong, Weiguo Lin, Peng Yu, Hongbo Ji
  • Patent number: 11161746
    Abstract: A method for the treatment of silicon-containing wastewater from the preparation of a molecular sieve or a catalyst includes the step of contacting the silicon-containing wastewater with at least one acid or at least one alkali, so that at least a part of the silicon elements in the silicon-containing wastewater form a colloid. A mixture containing a colloid is thus obtained. A silicon-containing solid phase and a first liquid phase are produced by a solid-liquid separation. A solid phase and a second liquid phase are produced by a solid-liquid separation after at least a part of the metal elements in the first liquid phase form a precipitate. At least a part of the second liquid phase is subjected to electrodialysis to produce an acid liquor and/or an alkali liquor. The silicon-containing solid phase can be used as the raw material for a molecular sieve synthesis.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: November 2, 2021
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Zhongqing Liu, Yibin Luo, Lina Zhou, Xingtian Shu
  • Patent number: 11161105
    Abstract: The present application relates to a hydrogenation catalyst, a process for producing the same and application thereof in the hydrotreatment of feedstock oil. The process comprises at least the following steps: (1) contacting a first active metal component and a first organic complexing agent with a carrier to obtain a composite carrier; (2) calcining the composite carrier to obtain a calcined composite carrier having a total carbon content of 1% by weight or less; and (3) contacting a second organic complexing agent with the calcined composite carrier to obtain the hydrogenation catalyst. The hydrogenation catalyst has both excellent hydrodesulfurization activity and hydrodenitrogenation activity, and exhibits a significantly prolonged service life.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: November 2, 2021
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Le Zhang, Mingfeng Li, Huifeng Li, Hong Nie, Shi Ding, Xuefen Liu, Zhihai Hu
  • Patent number: 11130917
    Abstract: A modified Y-type molecular sieve has a rare earth content of about 4-11% by weight on the basis of rare earth oxide, a sodium content of no more than about 0.7% by weight on the basis of sodium oxide, a zinc content of about 0.5-5% by weight on the basis of zinc oxide, a phosphorus content of about 0.05-10% by weight on the basis of phosphorus pentoxide, a framework silica-alumina ratio of about 7-14 calculated on the basis of SiO2/Al2O3 molar ratio, a percentage of non-framework aluminum content to the total aluminum content of no more than about 20%, and a percentage of the pore volume of secondary pores having a pore size of 2-100 nm to the total pore volume of about 15-30%. The modified Y-type molecular sieve has a high crystallinity, a structure comprising secondary pores, and a high thermal and hydrothermal stability.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: September 28, 2021
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Hao Sha, Lingping Zhou, Shuai Yuan, Weilin Zhang, Zhenyu Chen, Mingde Xu, Huiping Tian
  • Patent number: 11091372
    Abstract: The present invention relates to a molecular sieve, particularly to an ultra-macroporous molecular sieve. The present invention also relates to a process for the preparation of the molecular sieve and to its application as an adsorbent, a catalyst, or the like. The molecular sieve has a unique X-ray diffraction pattern and a unique crystal particle morphology. The molecular sieve can be produced by using a compound represented by the following formula (I), wherein the definition of each group and value is the same as that provided in the specification, as an organic template. The molecular sieve is capable of adsorbing more/larger molecules, thereby exhibiting excellent adsorptive/catalytic properties.
    Type: Grant
    Filed: July 11, 2020
    Date of Patent: August 17, 2021
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Yongrui Wang, Jincheng Zhu, Mingyi Sun, Xuhong Mu, Xingtian Shu