Patents Assigned to REstore NV
  • Patent number: 10396555
    Abstract: A power metering system includes any number of sites and a central database. Loads within a site are unmetered and a sensor data vector over time includes sensor data, operational data and external data. Iteration occurs over time intervals for all unmetered loads and the unmeasured power for each interval is disaggregated by matching a load type with a computer model in the central database having the same feature domain in order to predict the power usage of each load. Iteration again occurs over those intervals in which only a single load is operating; the power of that load is determined to be the unmeasured power minus miscellaneous power, and a new computer model is fitted for that single load and also uploaded to the database. The feature domain of an existing model may also be increased. Both iteration steps repeat until no more unmeasured power can be disaggregated.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: August 27, 2019
    Assignee: REstore NV
    Inventor: Jan-Willem Rombouts
  • Patent number: 9705327
    Abstract: A power metering system includes any number of sites and a central database. Loads within a site are unmetered and a sensor data vector over time includes sensor data, operational data and external data. Iteration occurs over time intervals for all unmetered loads and the unmeasured power for each interval is disaggregated by matching a load type with a computer model in the central database having the same feature domain in order to predict the power usage of each load. Iteration again occurs over those intervals in which only a single load is operating; the power of that load is determined to be the unmeasured power minus miscellaneous power, and a new computer model is fitted for that single load and also uploaded to the database. The feature domain of an existing model may also be increased. Both iteration steps repeat until no more unmeasured power can be disaggregated.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: July 11, 2017
    Assignee: RESTORE NV
    Inventor: Jan-Willem Rombouts
  • Patent number: 9581979
    Abstract: The power flexibility of energy loads is maximized using a value function for each load and outputting optimal control parameters. Loads are aggregated into a virtual load by maximizing a global value function. The solution yields a dispatch function providing: a percentage of energy for each individual load, a time-varying power level for each load, and control parameters and values. An economic term represents the value of the power flexibility to different players. A user interface includes for each time interval upper and lower bounds representing respectively the maximum power that may be reduced to the virtual load and the maximum power that may be consumed. A trader modifies an energy level in a time interval relative to the reference curve for the virtual load. Automatically, energy compensation for other intervals and recalculation of upper and lower boundaries occurs. The energy schedule for the virtual load is distributed to the actual loads.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: February 28, 2017
    Assignee: REStore NV
    Inventors: Jos Gheerardyn, Jan-Willem Rombouts
  • Patent number: 9471080
    Abstract: A central site, using grid operator requirements to reduce portfolio power according to frequency decreases within a frequency band, determines the optimal frequency triggers at which each load within a portfolio should reduce power and by how much power. Power availability of each load is optimized. These triggers and individual load power reductions are periodically dispatched from the central site to the individual loads. Each load detects when a frequency deviation occurs and is able to independently and rapidly reduce its power consumption according to the triggers and corresponding power reductions it received previous to the frequency deviation. Reliance upon the central site to detect a frequency deviation and then to dispatch power reductions in real time is not needed. The system also detects frequency increases and directs a portfolio of loads to consume more power. The system applies to energy loads and detection of a grid signal in general.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: October 18, 2016
    Assignee: Restore NV
    Inventors: Jan-Willem Rombouts, Jos Gheerardyn
  • Publication number: 20150112501
    Abstract: A central site, using grid operator requirements to reduce portfolio power according to frequency decreases within a frequency band, determines the optimal frequency triggers at which each load within a portfolio should reduce power and by how much power. Power availability of each load is optimized. These triggers and individual load power reductions are periodically dispatched from the central site to the individual loads. Each load detects when a frequency deviation occurs and is able to independently and rapidly reduce its power consumption according to the triggers and corresponding power reductions it received previous to the frequency deviation. Reliance upon the central site to detect a frequency deviation and then to dispatch power reductions in real time is not needed. The system also detects frequency increases and directs a portfolio of loads to consume more power. The system applies to energy loads and detection of a grid signal in general.
    Type: Application
    Filed: December 18, 2013
    Publication date: April 23, 2015
    Applicant: REstore NV
    Inventors: Jan-Willem ROMBOUTS, Jos GHEERARDYN
  • Patent number: 8838281
    Abstract: The power flexibility of energy loads are maximized using a value function for each load and outputting optimal control parameters per load. These loads are aggregated into a virtual load by maximizing a global value function that includes the value function for each individual load. The solution yields a dispatch function providing: a percentage of energy to be assigned to each individual load, a possible time-varying power level within a time interval for each load, and control parameters and values. An economic term of the global value function represents the value of the power flexibility to different energy players. A user interface includes for each time interval upper and lower bounds representing respectively the maximum power that may be reduced to the virtual load and the maximum power that may be consumed by the virtual load. An energy trader modifies an energy level in a time interval relative to the reference curve for the virtual load.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: September 16, 2014
    Assignee: Restore NV
    Inventors: Jan-Willem Rombouts, Jos Gheerardyn
  • Patent number: 8825219
    Abstract: The power flexibility of energy loads are maximized using a value function for each load and outputting optimal control parameters per load. These loads are aggregated into a virtual load by maximizing a global value function that includes the value function for each individual load. The solution yields a dispatch function providing: a percentage of energy to be assigned to each individual load, a possible time-varying power level within a time interval for each load, and control parameters and values. An economic term of the global value function represents the value of the power flexibility to different energy players. A user interface includes for each time interval upper and lower bounds representing respectively the maximum power that may be reduced to the virtual load and the maximum power that may be consumed by the virtual load. An energy trader modifies an energy level in a time interval relative to the reference curve for the virtual load.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: September 2, 2014
    Assignee: REstore NV
    Inventors: Jos Gheerardyn, Jan-Willem Rombouts
  • Publication number: 20130178993
    Abstract: The power flexibility of energy loads are maximized using a value function for each load and outputting optimal control parameters per load. These loads are aggregated into a virtual load by maximizing a global value function that includes the value function for each individual load. The solution yields a dispatch function providing: a percentage of energy to be assigned to each individual load, a possible time-varying power level within a time interval for each load, and control parameters and values. An economic term of the global value function represents the value of the power flexibility to different energy players. A user interface includes for each time interval upper and lower bounds representing respectively the maximum power that may be reduced to the virtual load and the maximum power that may be consumed by the virtual load. An energy trader modifies an energy level in a time interval relative to the reference curve for the virtual load.
    Type: Application
    Filed: February 27, 2013
    Publication date: July 11, 2013
    Applicant: RESTORE NV
    Inventor: REstore NV
  • Publication number: 20130178991
    Abstract: The power flexibility of energy loads are maximized using a value function for each load and outputting optimal control parameters per load. These loads are aggregated into a virtual load by maximizing a global value function that includes the value function for each individual load. The solution yields a dispatch function providing: a percentage of energy to be assigned to each individual load, a possible time-varying power level within a time interval for each load, and control parameters and values. An economic term of the global value function represents the value of the power flexibility to different energy players. A user interface includes for each time interval upper and lower bounds representing respectively the maximum power that may be reduced to the virtual load and the maximum power that may be consumed by the virtual load. An energy trader modifies an energy level in a time interval relative to the reference curve for the virtual load.
    Type: Application
    Filed: February 27, 2013
    Publication date: July 11, 2013
    Applicant: RESTORE NV
    Inventor: REstore NV
  • Patent number: 8417391
    Abstract: The power flexibility of energy loads is maximized using a value function for each load and outputting optimal control parameters. Loads are aggregated into a virtual load by maximizing a global value function. The solution yields a dispatch function providing: a percentage of energy for each individual load, a time-varying power level for each load, and control parameters and values. An economic term represents the value of the power flexibility to different players. A user interface includes for each time interval upper and lower bounds representing respectively the maximum power that may be reduced to the virtual load and the maximum power that may be consumed. A trader modifies an energy level in a time interval relative to the reference curve for the virtual load. Automatically, energy compensation for other intervals and recalculation of upper and lower boundaries occurs. The energy schedule for the virtual load is distributed to the actual loads.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: April 9, 2013
    Assignee: REstore NV
    Inventors: Jan-Willem Rombouts, Jos Gheerardyn, Pieter-Jan Mermans, Luc Snijers