Abstract: A system and method for identifying damage to an embankment includes acquiring satellite imagery of an area of the embankment, generating a set of input data from the satellite imagery, removing at least one anomaly in the set of input data to obtain a cleaned set of input data, and identifying the damage by determining a dam motion area indicative of ground motion in the embankment from the cleaned set of input data and determining an anomalous vegetation area and an anomalous wetness area indicative of seepage in the embankment from the cleaned set of input data.
Abstract: A system and method for automated forest inventory mapping. The method may include receiving an image depicting an overhead view of a wooded area, the image comprising a plurality of pixels; receiving a set of climate data for a geographic region in which the wooded area is located; receiving a point cloud of a digital surface model of the wooded area; concatenating data corresponding to the plurality of pixels of the image, the set of climate data, and the point cloud into a feature vector; executing a machine learning model using the feature vector to generate timber data for each of the plurality of pixels of the image; and generating an interactive overlay from the timber data, the interactive overlay comprising the generated timber data for each of the plurality of pixels of the image.
Abstract: A system and method for identifying damage to an embankment includes acquiring satellite imagery of an area of the embankment, generating a set of input data from the satellite imagery, removing at least one anomaly in the set of input data to obtain a cleaned set of input data, and identifying the damage by determining a dam motion area indicative of ground motion in the embankment from the cleaned set of input data and determining an anomalous vegetation area and an anomalous wetness area indicative of seepage in the embankment from the cleaned set of input data.
Abstract: Embodiments are directed to a water network monitoring system for determining leakage from a network. The water network may comprise any of pipelines, aqueducts, reservoir dams, reservoir embankments and sewers. The present water network monitoring system employs Earth observation data, such as synthetic aperture radar (SAR) data and optical data, collected from a geographical region that includes the water network system of interest. This data is collected over successive time periods and analysed to detect any abnormal changes in the indicators within the area in the vicinity of the water network.
Type:
Grant
Filed:
July 19, 2017
Date of Patent:
October 13, 2020
Assignee:
Rezatec Limited
Inventors:
Todd Sajwaj, Louise Bermingham, Andrew Carrel