Abstract: A imaging device includes: a spotlight emitting unit configured to emit two parallel spotlights; an imaging element configured to capture a measurement frame image having two spot areas irradiated with the spotlights and a plurality of first frame images which do not have the two spot areas, during capturing a moving image; and a controller configured to generate a grid image having a plurality of grid lines arranged at intervals set on the basis of the distance between the two spot areas in the measurement frame image, generate a plurality of second frame images by superimposing the grid image on the first frame images, and display the second frame images on a display unit.
Abstract: An imaging apparatus includes a lens, a moving mechanism, an imaging device, and a controller. The moving mechanism moves the lens in the optical axis direction. The controller drives, in response to an input of an imaging instruction, the moving mechanism to move the lens to a plurality of imaging positions from one of infinity and close-up ends to the other and drives the imaging device when the lens is positioned at each of the imaging positions. Since the interior of an oral cavity, for example, is difficult to capture, the focus can hardly be adjusted on it with high accuracy when an autofocus mechanism is used. However, since the lens is moved to the plurality of imaging positions in the optical axis direction in response to each input of the imaging instruction to obtain captured images, an in-focus image can be reliably obtained.
Abstract: A window cleaning apparatus according to an embodiment of the present invention includes a first cleaning unit and a second cleaning unit attached on opposite surfaces of a window, respectively, through a magnetic field, and moving on the opposite surfaces of a window. The window cleaning apparatus includes a first magnetic module included in the first cleaning unit, a second magnetic module included in the second cleaning unit, and a control part moving or rotating at least one of the first and second cleaning units when the magnetic field between the first and second cleaning units is out of a normal range.
Abstract: A near field communication antenna device of a mobile terminal is provided. The near field communication antenna device includes a window including a display region for transmitting an image displayed by a display and a black mark region formed around the display region, a multi-layer Flexible Printed Circuit Board (FPCB) on which a plurality of layers are laminated on the lower side of the black mark region of the window, and a spiral loop-shaped antenna pattern in which conductive lines are formed on respective layers of the multi-layer FPCB and are connected to each other. Accordingly, a near field communication antenna is not disposed in a separated installation space, an antenna pattern width can be reduced, and performance of the near field communication antenna may be prevented from being degraded when a battery cover is made of metal or has a curved shape.