Patents Assigned to RF Nano Corporation
  • Patent number: 8039870
    Abstract: A multifinger carbon nanotube field-effect transistor (CNT FET) is provided in which a plurality of nanotube top gated FETs are combined in a finger geometry along the length of a single carbon nanotube, an aligned array of nanotubes, or a random array of nanotubes. Each of the individual FETs are arranged such that there is no geometrical overlap between the gate and drain finger electrodes over the single carbon nanotube so as to minimize the Miller capacitance (Cgd) between the gate and drain finger electrodes. A low-K dielectric may be used to separate the source and gate electrodes in the multifinger CNT FET so as to further minimize the Miller capacitance between the source and gate electrodes.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: October 18, 2011
    Assignee: RF Nano Corporation
    Inventors: Peter J. Burke, Steffen McKernan, Dawei Wang, Zhen Yu
  • Patent number: 7858454
    Abstract: A method is provided for forming a self-aligned carbon nanotube (CNT) field effect transistor (FET). According to one feature, a self-aligned source-gate-drain (S-G-D) structure is formed that allows for the shrinking of the gate length to arbitrarily small values, thereby enabling ultra-high performance CNT FETs. In accordance with another feature, an improved design of the gate to possess a “T”-shape, referred to as the “T-Gate,” thereby enabling a reduction in gate resistance and further providing an increased power gain. The self-aligned T-gate CNT FET is formed using simple fabrication steps to ensure a low cost, high yield process.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: December 28, 2010
    Assignee: RF Nano Corporation
    Inventor: Amol M. Kalburge
  • Patent number: 7816906
    Abstract: A method is provided for determining the anisotropy of alignment of a random array of 1-D conductive elements (e.g., carbon nanotube or silicon nanowire) formed on a substrate. A pattern of a plurality of electrodes are arranged on the substrate containing the 1-D conductive elements and a plurality of electrical property measurements are performed in a plurality of different directions between the plurality of electrodes. The plurality of measurements are combined together to generate a total measurement sum of electrical property measurements between the various electrodes. The measured electrical property is determined between a selected pair of the plurality of electrodes along a selected direction extending between the selected pair of electrodes. The anisotropy of alignment of the 1-D conductive elements on the substrate along the selected direction is determined based on a ratio of the measured electrical property between the selected pair of electrodes versus the total measurement sum.
    Type: Grant
    Filed: April 1, 2008
    Date of Patent: October 19, 2010
    Assignee: RF Nano Corporation
    Inventors: Amol M. Kalburge, Zhen Yu
  • Patent number: 7721347
    Abstract: A method and device are provided for determining, without contact, the physical and electrical properties of nanotube materials. The device includes a scanning probe configured to generate a signal of certain frequency onto the nanotube material and measure a reflected signal from the nanotube material, and a processor coupled to the scanning probe and configured to determine the physical and electrical properties of the nanotube material from the measured reflected signal. The method includes positioning a scanning probe relative to the nanotube material, generating a signal of certain frequency onto the nanotube material, and measuring a reflected signal from the nanotube material.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: May 18, 2010
    Assignee: RF Nano Corporation
    Inventor: Peter J. Burke