Abstract: Methods and apparatus are provided for efficiently and intelligently communicating characteristic information in video graphics switcher environments. An intelligent video graphics switcher obtains display device characteristic information associated with multiple display devices and maintains updated characteristic information. When an event such as a connection/disconnection or switching event occurs between the video graphics switcher and a display device, the characteristic information is communicated to an appropriate host by triggering a connection/disconnection event with the host.
Abstract: Methods and apparatus are provided for efficiently and intelligently communicating characteristic information in video graphics switcher environments. An intelligent video graphics switcher obtains display device characteristic information associated with multiple display devices and maintains updated characteristic information. When an event such as a connection/disconnection or switching event occurs between the video graphics switcher and a display device, the characteristic information is communicated to an appropriate host by triggering a connection/disconnection event with the host.
Abstract: Mechanisms are provided for efficiently manipulating devices such as computer systems, cameras, recorders, sensors, etc., referred to herein as media sources. The media sources are connected to a control computer over a network. Output such as video and other data output from the media sources are provided on a display system having multiple displays where each display corresponds to a particular media source. Input devices such as keyboards, mice, and touchpads may be used to operate the control computer and control media sources based on cursor position.
Abstract: Methods and apparatus are provided for efficiently controlling source computers connected to a display system. A control computer is connected to one or more source computers and video output is shown on a display system. A mouse and associated input devices may operate in video processor mode or source computer mode based on mouse x-coordinate and y-coordinate position information. Other modes such as control computer mode are also possible. In particular instances, a mouse and associated input devices operate in source computer mode to control a particular source computer when the mouse pointer position resides within one of the source computer windows. A mode of operation may switch based on a change in mouse position.
Abstract: Methods and apparatus are provided for efficiently controlling source computers connected to a display system. A control computer, source computers, and a video processor are connected over a control network. Input signals such as keyboard and mouse input signals are provided to the video processor and the source computers through the control network. The source computers are also connected to the video processor through a video interface, such as multiple Digital Video Interface (DVI) lines. The use of a hybrid system allows flexibility in configuring and using the control network while providing high throughput and low latency for video sent to the video processor.
Abstract: Methods and apparatus are provided for efficiently controlling source computers connected to a display system. A control computer, source computers, and a video processor are connected over a control network. Input signals such as keyboard and mouse input signals are provided to the video processor and the source computers through the control network. The source computers are also connected to the video processor through a video interface, such as multiple Digital Video Interface (DVI) lines. The use of a hybrid system allows flexibility in configuring and using the control network while providing high throughput and low latency for video sent to the video processor.
Abstract: Methods and apparatus are provided for efficiently and intelligently communicating characteristic information in video graphics switcher environments. An intelligent video graphics switcher obtains display device characteristic information associated with multiple display devices and maintains updated characteristic information. When an event such as a connection/disconnection or switching event occurs between the video graphics switcher and a display device, the characteristic information is communicated to an appropriate host by triggering a connection/disconnection event with the host.
Abstract: A video multiplexor-encoder and decoder-converter includes a video multiplexor and encoder for selectively receiving, time-division multiplexing and encoding multiple video signals representing multiple video images for transfer and simultaneous display thereof in a selected pattern of multiple video windows on a video display device, and further includes a decoder and video converter for receiving, decoding and converting an encoded, time-division multiplexed video signal for selective, simultaneous display of the multiple video images in the selected pattern of multiple video windows on a video display device. The encoded, multiplexed video signal includes display control data which selectively represent a position, size and relative visibility priority for each one of the video images within the selected display pattern of multiple video windows.