Abstract: Rhenium-tungsten alloys including rhenium and from about 0.025% to less than about 10% by weight tungsten. The rhenium-tungsten alloys are formed by a process that includes coating rhenium metal powders with a liquid including a tungsten compound, drying the coated rhenium powder, compressing the dried coated powder to form a compact, and then sintering the compact to form the rhenium-tungsten alloy. The rhenium-tungsten alloys according to the invention exhibit mechanical properties that are superior to high-purity rhenium metal without a loss in ductility.
Abstract: This invention relates to powders of substantially spherical particles that consist essentially of at least about 10% by weight rhenium optionally alloyed with up to about 90% by weight tungsten or up to about 60% by weight molybdenum. In one embodiment, the spherical particles have an average diameter of less than about 150 microns, and more preferably, an average diameter within the range of from about 10 to about 50 microns. The powders according to the invention exhibit good flow characteristics and can be used to fabricate components having complicated shapes and configurations using conventional powder metallurgy techniques.
Abstract: A molybdenum-rhenium alloy having an excellent low temperature ductility paired with an excellent high temperature strength. The alloy consists, essentially in % by weight, of 42 up to <45% Re, up to 3% each of W, Y, Rh, Sc, Si, Ta, Tb, V, Nb or Zr at which the sum of said elements is no greater than about 5%, the remainder being Mo besides normally present impurities.