Abstract: Fluid property sensors described herein may include a resonator configured to be immersed in a fluid or flowable medium and a vibrator coupled to the resonator, such that vibrations of the vibrator are transmitted to the resonator, e.g., to discourage and/or remove any buildup or deposits on the resonator and/or increase accuracy of the sensors. The frequency of the vibrator is configured to be substantially lower than the frequency of the resonator, such that operation of the resonator is not negatively affected. The vibrator may be located internal to, or external to, a chassis of the device.
Type:
Grant
Filed:
July 11, 2024
Date of Patent:
April 1, 2025
Assignee:
Rheonics GmbH
Inventors:
Joe Goodbread, Daniel Brunner, Sunil Kumar
Abstract: A method of measuring the amount of corrosion of a target material caused exposure to a fluid, over a period of time, utilizing a corrosion measuring device, including a resonator having a first surface area made of a material having a corrosion profile like that of the target material and having a second surface area made of material having a corrosion profile unlike that of the target material; and a transducer assembly, positioned to drive the resonator and sense resultant resonator motion, thereby producing a sense signal. In the method, the resonator is exposed to the target fluid over the period of time and the sense signal is analyzed over the period of time to determine changes in how the resonator responds to being driven by the transducer assembly, over time.
Type:
Application
Filed:
April 18, 2016
Publication date:
May 3, 2018
Applicant:
Rheonics GmbH
Inventors:
JOSEPH H. GOODBREAD, SUNIL KUMAR, KLAUS HAEUSLER
Abstract: A fluid properties measurement device, including a magnetically excited and sensed resonator and a resonator electromagnetic excitation assembly, including an excitation coil driven by an electrical network, electrically connected to the excitation coil. The excitation coil is positioned so that a varying magnetic field produced by the excitation coil will drive the resonator in a pattern of resonating movement that has predetermined characteristics. Also, an electromagnetic sensing assembly, including a gradiometric sense coil is positioned so that an electromagnetic field originating due to movement of the resonator in a pattern having the predetermined characteristics, will create a time-varying gradient across the sense coil. Finally, a signal sensing electrical network is electrically connected to the sense coil.