Abstract: An athletic training system includes a position processor which can be mounted on the head of an athlete by means of, for example, a head band. The position processor includes a sensor in the form of two tilt sensors mounted at right angles to each other. The direction of tilt is sampled by a microprocessor as output voltages from the sensors for further processing. Software of the microprocessor processes the sensed directions by filtering and hysterisis algorithms in order to eliminate rapid changes of state of the switches of the sensor due to sporadic movement caused by the motion of the athlete. The positional information is conveyed to the athlete as a pattern of lights and tones. Proper and improper head positions are indicated for a plurality of directions of tilt. The training system is user controllable by means of rotary switches to adjust, among other things, the level of sensitivity of the system. The system can also self-center by adjusting all sampled directions by a sampled reference value.
Abstract: A position processor can be mounted on the head of an athlete by means of, for example, a head band. The position processor includes a sensor in the form of a twelve position mercury switch for sensing the direction and angle of tilt of the head. The ON/OFF states of the switches of the sensor are sampled by a multiplexer under the control of a microprocesor. The multiplexer presents the ON/OFF states to the microprocessor for further procesing. Software of the microprocessor processes the sensed ON/OFF states through filtering and hysterisis algorithms and conveys the processed states as positional information to the athlete as a pattern of lights and tones. Proper and improper head positions are indicated for a plurality of directions of tilt. The system uses software filtering to provide hysterisis in order to eliminate rapid changes of state of the switches of the sensor due to sporadic movement caused by the motion of the athelete.