Abstract: A method for forming carboxylate-alumoxane nanoparticles comprises subjecting a mixture comprising boehmite and carboxylic acid to mechanical shear. The method can be carried out at a temperature above ambient and preferably a temperature greater than 80° C., and can be carried out in the absence of a liquid phase.
Abstract: This invention relates generally to a single-wall carbon nanotube (SWNT) purification process and more particularly to a purification process that comprises heating the SWNT-containing felt under oxidizing conditions to remove the amorphous carbon deposits and other contaminating materials. In a preferred mode of this purification procedure, the felt is heated in an aqueous solution of an inorganic oxidant, such as nitric acid, a mixture of hydrogen peroxide and sulfuric acid, or a potassium permanganate. Preferably, SWNT-containing felts are refluxed in an aqueous solution of an oxidizing acid at a concentration high enough to etch away amorphous carbon deposits within a practical time frame, but not so high that the single-wall carbon nanotube material will be etched to a significant degree. When material having a high proportion of SWNT is purified, the preparation produced will be enriched in single-wall nanotubes, so that the SWNT are substantially free of other material.
Type:
Grant
Filed:
December 21, 2001
Date of Patent:
October 3, 2006
Assignee:
William Marsh Rice University
Inventors:
Daniel T. Colbert, Hongjie Dai, Jason H. Hafner, Andrew G. Rinzler, Richard E. Smalley, Jie Liu, Kenneth A. Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
Abstract: This invention relates generally to forming a patterned array of single-wall carbon nanotubes (SWNT). In one embodiment, a nanoscale array of microwells is provided on a substrate; a metal catalyst is deposited in each microwells; and a stream of hydrocarbon or CO feedstock gas is directed at the substrate under conditions that effect growth of single-wall carbon nanotubes from each microwell.
Type:
Grant
Filed:
December 28, 2001
Date of Patent:
September 19, 2006
Assignee:
William Marsh Rice University
Inventors:
Richard E. Smalley, Daniel T. Colbert, Hongjie Dai, Jie Liu, Andrew G. Rinzler, Jason H. Hafner, Ken Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
Abstract: The present invention is generally directed to new liquid-liquid extraction methods for the length-based separation of carbon nanotubes (CNTs) and other 1-dimensional nanostructures.
Type:
Application
Filed:
November 29, 2005
Publication date:
September 14, 2006
Applicant:
William Marsh Rice University
Inventors:
Kirk Ziegler, Daniel Schmidt, Robert Hauge, Richard Smalley, Irene Marek
Abstract: The present invention involves the interaction of radiation with functionalized carbon nanotubes that have been incorporated into various host materials, particularly polymeric ones. The present invention is directed to chemistries, methods, and apparatuses which exploit this type of radiation interaction, and to the materials which result from such interactions. The present invention is also directed toward the time dependent behavior of functionalized carbon nanotubes in such composite systems.
Abstract: This invention relates generally to a method for producing composites of single-wall carbon nanotubes (SWNTs) and compositions thereof. In one embodiment, the present invention involves a method of producing a composite material that includes a matrix and a carbon nanotube material embedded within said matrix. In another embodiment, a method of producing a composite material containing carbon nanotube material is disclosed. This method includes the steps of preparing an assembly of a fibrous material; adding the carbon nanotube material to the fibrous material; and adding a matrix material precursor to the carbon nanotube material and the fibrous material.
Type:
Grant
Filed:
December 28, 2001
Date of Patent:
September 12, 2006
Assignee:
William Marsh Rice University
Inventors:
Richard E. Smalley, Daniel T. Colbert, Hongjie Dai, Jie Liu, Andrew G. Rinzler, Jason H. Hafner, Kenneth A. Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
Abstract: The invention provides isolated dehydro-estriol (8-DHE3) and dehydro-pregnanetriol (7-DHPT), and methods of their synthesis. These compounds are useful in diagnosis of Smith-Lemli-Optiz syndrome (SLOS).
Type:
Grant
Filed:
February 14, 2003
Date of Patent:
September 12, 2006
Assignees:
William Marsh Rice University, Children's Hospital & Research Center at Oakland
Inventors:
Cedric Shackleton, Li-Wei Guo, William K. Wilson
Abstract: This invention relates generally to carbon fiber produced from single-wall carbon nanotube (SWNT) molecular arrays. In one embodiment, the carbon fiber which comprises an aggregation of substantially parallel carbon nanotubes comprises more than one molecular array. Another embodiment of this invention is a large cable-like structure with enhanced tensile properties comprising a number of smaller separate arrays. In another embodiment, a composite structure is disclosed in which a central core array of metallic SWNTs is surrounded by a series of smaller circular non-metallic SWNT arrays.
Type:
Grant
Filed:
December 21, 2001
Date of Patent:
August 29, 2006
Assignee:
William Marsh Rice University
Inventors:
Daniel T. Colbert, Hongjie Dai, Jason H. Hafner, Andrew G. Rinzler, Richard E. Smalley
Abstract: The present invention relates to an all gas-phase process for the purification of single-wall carbon nanotubes and the purified single-wall carbon nanotube material. Known methods of single-wall carbon nanotube production result in a single-wall carbon nanotube product that contains single-wall carbon nanotubes in addition to impurities including residual metal catalyst particles and amounts of small amorphous carbon sheets that surround the catalyst particles and appear on the sides of the single-wall carbon nanotubes and “ropes” of single-wall carbon nanotubes. The purification process removes the extraneous carbon as well as metal-containing residual catalyst particles. The process comprises oxidation of the single-wall carbon nanotube material, reduction and reaction of a halogen-containing gas with the metal-containing species. The oxidation step may be done dry or in the presence of water vapor.
Type:
Grant
Filed:
February 8, 2002
Date of Patent:
August 15, 2006
Assignee:
William Marsh Rice University
Inventors:
Richard E. Smalley, Robert H. Hauge, Wan-Ting Chiang, Yuemei Yang, Kenneth A. Smith, Wilber Carter Kittrell, Zhenning Gu
Abstract: The present invention is directed to novel flame retardant monomers and polymers, wherein the flame retardant properties of the polymers are provided by functionality in pendant groups attached to a polymer backbone (as opposed to the polymer backbone itself possessing flame retardant properties. The present invention is also directed to methods of making such polymers and monomers, and articles of manufacture incorporating such monomers and polymers.
Type:
Application
Filed:
June 18, 2004
Publication date:
August 10, 2006
Applicant:
William Marsh Rice University
Inventors:
James Tour, Joshua Jurs, Jason Stephenson
Abstract: This invention relates generally to a forming an array of single-wall carbon nanotubes (SWNT) in an electric field and compositions thereof. In one embodiment, a purified bucky paper of single-wall carbon nanotubes is used as the starting material. Upon oxidative treatment of the bucky paper surface, many tube and/or rope ends protrude up from the surface of the paper. Disposing the resulting bucky paper in an electric field results in the protruding tubes and or ropes of single-wall carbon nanotubes aligning in a direction substantially perpendicular to the paper surface. These tubes tend to coalesce to form a molecular array. In another embodiment, a molecular array of SWNTs can be made by “combing” the purified bucky paper starting material with a sharp microscopic tip to align the nanotubes.
Type:
Grant
Filed:
August 7, 2003
Date of Patent:
August 8, 2006
Assignee:
William Marsh Rice University
Inventors:
Richard E. Smalley, Daniel T. Colbert, Hongjie Dai, Jie Liu, Andrew G. Rinzler, Jason H. Hafner, Kenneth A. Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
Abstract: The present invention is directed toward a method of sidewall-functionalizing single-walled carbon nanotubes (SWNTs) through C—N bond forming substitution reactions with fluorinated SWNTs (fluoronanotubes), and to the sidewall-functionalized SWNTs comprising C—N bonds between carbons of the SWNT sidewall and nitrogens of the functionalizing groups made by these methods. Furthermore, when diamine species are utilized as reactants, novel materials like crosslinked SWNTs and “nanotube-nylons” can be generated. In some embodiments, SWNTs with functional groups covalently attached to their side walls through C—N bonds are prepared by either the direct interaction of fluoronanotubes with terminal alkylidene diamines or diethanolamine, or by a two-step procedure involving consecutive treatments with Li3N in diglyme and RCl (R?H, n-butyl, benzyl) reagents.
Type:
Application
Filed:
November 14, 2003
Publication date:
August 3, 2006
Applicant:
William Marsh Rice University
Inventors:
Valery Khabashesku, John Margrave, Mary Margrave, Joel Stevens, Gaelle Derrien
Abstract: The present invention is directed to methods of integrating carbon nanotubes into epoxy polymer composites via chemical functionalization of carbon nanotubes, and to the carbon nanotube-epoxy polymer composites produced by such methods. Integration is enhanced through improved dispersion and/or covalent bonding with the epoxy matrix during the curing process. In general, such methods involve the attachment of chemical moieties (i.e., functional groups) to the sidewall and/or end-cap of carbon nanotubes such that the chemical moieties react with either the epoxy precursor(s) or the curing agent(s) (or both) during the curing process. Additionally, in some embodiments, these or additional chemical moieties can function to facilitate dispersion of the carbon nanotubes by decreasing the van der Waals attractive forces between the nanotubes.
Abstract: The present invention is generally directed to methods of ozonating CNTs in fluorinated solvents (fluoro-solvents), wherein such methods provide a less dangerous alternative to existing ozonolysis methods. In some embodiments, such methods comprise the steps of: (a) dispersing carbon nanotubes in a fluoro-solvent to form a dispersion; and (b) reacting ozone with the carbon nanotubes in the dispersion to functionalize the sidewalls of the carbon nanotubes and yield functionalized carbon nanotubes with oxygen-containing functional moieties. In some such embodiments, the fluoro-solvent is a fluorocarbon solvent, such as a perfluorinated polyether.
Type:
Application
Filed:
November 22, 2005
Publication date:
July 20, 2006
Applicant:
William Marsh Rice University
Inventors:
Kirk Ziegler, Jonah Shaver, Robert Hauge, Richard Smalley, Irene Marek
Abstract: A method for making inhomogeneous microparticles comprises a) providing an amount of each of at least two polyelectrolytes having a charge, b) providing an amount of a counterion having a valence of at least 2, c) combining the polyelectrolytes and the counterion in a solution such that the polyelectrolyte self-assembles to form inhomogeneous aggregates, and d) adding nanoparticles to the solution such that nanoparticles arrange themselves around the inhomogeneous aggregates to form inhomogeneous particles. The polyelectrolyte may have a positive or negative charge. The charge ratio R of total charge of the counterions to the total charge of the polyelectrolyte may be greater than 1.0.
Abstract: The invention relates to a process for sorting and separating a mixture of (n, m) type single-wall carbon nanotubes according to (n, m) type. A mixture of (n, m) type single-wall carbon nanotubes is suspended such that the single-wall carbon nanotubes are individually dispersed. The nanotube suspension can be done in a surfactant-water solution and the surfactant surrounding the nanotubes keeps the nanotube isolated and from aggregating with other nanotubes. The nanotube suspension is acidified to protonate a fraction of the nanotubes. An electric field is applied and the protonated nanotubes migrate in the electric fields at different rates dependent on their (n, m) type. Fractions of nanotubes are collected at different fractionation times. The process of protonation, applying an electric field, and fractionation is repeated at increasingly higher pH to separated the (n, m) nanotube mixture into individual (n, m) nanotube fractions.
Type:
Grant
Filed:
March 4, 2003
Date of Patent:
July 11, 2006
Assignee:
William Marsh Rice University
Inventors:
Richard E. Smalley, Robert H. Hauge, W. Carter Kittrell, Ramesh Sivarajan, Michael S. Strano, Sergei M. Bachilo, R. Bruce Weisman
Abstract: A nanoparticle coated with a semiconducting material and a method for making the same. In one embodiment, the method comprises making a semiconductor coated nanoparticle comprising a layer of at least one semiconducting material covering at least a portion of at least one surface of a nanoparticle, comprising: (A) dispersing the nanoparticle under suitable conditions to provide a dispersed nanoparticle; and (B) depositing at least one semiconducting material under suitable conditions onto at least one surface of the dispersed nanoparticle to produce the semiconductor coated nanoparticle. In other embodiments, the nanoparticle comprises a fullerene. Further embodiments include the semiconducting material comprising CdS or CdSe.
Type:
Application
Filed:
November 19, 2003
Publication date:
July 6, 2006
Applicant:
William Marsh Rice University
Inventors:
Andrew Barron, Dennis Flood, John Loscutova
Abstract: A field effect transistor and a method for making the same. In one embodiment, the field effect transistor comprises a source; a drain; a gate; at least one carbon nanotube on the gate; and a dielectric layer that coats the gate and a portion of the at least one carbon nanotube, wherein the at least one carbon nanotube has an exposed portion that is not coated with the dielectric layer, and wherein the exposed portion is functionalized with at least one indicator molecule.
Type:
Application
Filed:
November 19, 2003
Publication date:
July 6, 2006
Applicant:
William Marsh Rice University
Inventors:
Andrew Barron, Dennis Flood, Elizabeth Whitsitt, Robin Anderson, Graham Scott
Abstract: This invention provides a method of making single-wall carbon nanotubes by laser vaporizing a mixture of carbon and one or more Group VIII transition metals. Single-wall carbon nanotubes preferentially form in the vapor and the one or more Group VIII transition metals catalyzed growth of the single-wall carbon nanotubes. In one embodiment of the invention, one or more single-wall carbon nanotubes are fixed in a high temperature zone so that the one or more Group VIII transition metals catalyze further growth of the single-wall carbon nanotube that is maintained in the high temperature zone. In another embodiment, two separate laser pulses are utilized with the second pulse timed to be absorbed by the vapor created by the first pulse.
Type:
Grant
Filed:
April 30, 2003
Date of Patent:
July 4, 2006
Assignee:
William Marsh Rice University
Inventors:
Richard E. Smalley, Daniel T. Colbert, Ting Guo, Andrew G. Rinzler, Pavel Nikolaev, Andreas Thess
Abstract: This invention relates generally to forming an array of single-wall carbon nanotubes (SWNT). In one embodiment, a macroscopic molecular array is provided comprising at least about 106 single-wall carbon nanotubes in generally parallel orientation and having substantially similar lengths in the range of from about 5 to about 500 nanometers.
Type:
Grant
Filed:
December 28, 2001
Date of Patent:
July 4, 2006
Assignee:
William Marsh Rice University
Inventors:
Richard E. Smalley, Daniel T. Colbert, Hongjie Dai, Jie Liu, Andrew G. Rinzler, Jason H. Hafner, Kenneth A. Smith, Ting Guo, Pavel Nikolaev, Andreas Thess