Patents Assigned to Rice University
  • Publication number: 20020159944
    Abstract: The present invention relates to an all gas-phase process for the purification of single-wall carbon nanotubes and the purified single-wall carbon nanotube material. Known methods of single-wall carbon nanotube production result in a single-wall carbon nanotube product that contains single-wall carbon nanotubes in addition to impurities including residual metal catalyst particles and amounts of small amorphous carbon sheets that surround the catalyst particles and appear on the sides of the single-wall carbon nanotubes and “ropes” of single-wall carbon nanotubes. The purification process removes the extraneous carbon as well as metal-containing residual catalyst particles. The process comprises oxidation of the single-wall carbon nanotube material, reduction and reaction of a halogen-containing gas with the metal-containing species. The oxidation step may be done dry or in the presence of water vapor.
    Type: Application
    Filed: February 8, 2002
    Publication date: October 31, 2002
    Applicant: William Marsh Rice University
    Inventors: Richard E. Smalley, Robert H. Hauge, Wan-Ting Chiang, Yuemei Yang, Kenneth A. Smith, Wilbur Carter Kittrell, Zhenning Gu
  • Publication number: 20020159943
    Abstract: A method for purifying a mixture comprising single-wall carbon nanotubes and amorphous carbon contaminate is disclosed The method includes the steps of heating the mixture under oxidizing conditions sufficient to remove the amorphous carbon, followed by recovering a product comprising at least about 80% by weight of single-wall carbon nanotubes. A method for producing tubular carbon molecules of about 5 to 500 nm in length is also disclosed. The method includes the steps of cutting single-wall nanotube containing-material to form a mixture of tubular carbon molecules having lengths in the range of 5-500 nm and isolating a fraction of the molecules having substantially equal lengths. The nanotubes may be used, singularly or in multiples, in power transmission cables, in solar cells, in batteries, as antennas, as molecular electronics, as probes and manipulators, and in composites.
    Type: Application
    Filed: December 28, 2001
    Publication date: October 31, 2002
    Applicant: William Marsh Rice University
    Inventors: Richard E. Smalley, Daniel T. Colbert, Hongjie Dai, Jie Liu, Andrew G. Rinzler, Jason H. Hafner, Ken Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
  • Publication number: 20020150524
    Abstract: This invention relates generally to a method for producing composites of single-wall carbon nanotubes (SWNTs) and compositions thereof. In one embodiment, the present invention involves a method of producing a composite material that includes a matrix and a carbon nanotube material embedded within said matrix. In another embodiment, a method of producing a composite material containing carbon nanotube material is disclosed. This method includes the steps of preparing an assembly of a fibrous material; adding the carbon nanotube material to the fibrous material; and adding a matrix material precursor to the carbon nanotube material and the fibrous material.
    Type: Application
    Filed: December 28, 2001
    Publication date: October 17, 2002
    Applicant: William Marsh Rice University
    Inventors: Richard E. Smalley, Daniel T. Colbert, Hongjie Dai, Jie Liu, Andrew G. Rinzler, Jason H. Hafner, Ken Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
  • Patent number: 6459940
    Abstract: Nonlinear control algorithms to compensate for kinematic error in harmonic drives provide a solid basis to improve their performance of harmonic drives in precision positioning applications. The present closed loop control algorithms compensate for kinematic error irrespective of its form in both set-point and trajectory tracking applications.
    Type: Grant
    Filed: May 5, 2000
    Date of Patent: October 1, 2002
    Assignee: Wm. Marsh Rice University
    Inventors: Fathi Ghorbel, Prasanna S. Ghandi
  • Publication number: 20020136681
    Abstract: This invention relates generally to a method for producing single-wall carbon nanotube (SWNT) catalyst supports and compositions thereof. In one embodiment, SWNTs or SWNT structures can be employed as the support material. A transition metal catalyst is added to the SWNT. In a preferred embodiment, the catalyst metal cluster is deposited on the open nanotube end by a docking process that insures optimum location for the subsequent growth reaction. The metal atoms may be subjected to reductive conditions.
    Type: Application
    Filed: December 28, 2001
    Publication date: September 26, 2002
    Applicant: William Marsh Rice University
    Inventors: Richard E. Smalley, Daniel T. Colbert, Hongjie Dai, Jie Liu, Andrew G. Rinzler, Jason H. Hafner, Ken Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
  • Publication number: 20020136683
    Abstract: This invention relates generally to forming arrays of single-wall carbon nanotubes (SWNT). In one embodiment, the present invention involves forming a macroscopic molecular array of tubular carbon molecules, said method comprising the step of assembling subarrays of up to 106 single-wall carbon nanotubes into a composite array.
    Type: Application
    Filed: December 28, 2001
    Publication date: September 26, 2002
    Applicant: William Marsh Rice University
    Inventors: Richard E. Smalley, Daniel T. Colbert, Hongjie Dai, Jie Liu, Andrew G. Rinzler, Jason H. Hafner, Ken Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
  • Publication number: 20020127171
    Abstract: The present invention relates to a process for the purification of single-wall carbon nanotubes and the purified single-wall carbon nanotube material. Known methods of single-wall carbon nanotube production result in a single-wall carbon nanotube product that contains single-wall carbon nanotubes in addition to impurities including residual metal catalyst particles and amounts of small amorphous carbon sheets that surround the catalyst particles and appear on the sides of the single-wall carbon nanotubes and “ropes” of single-wall carbon nanotubes. The purification process removes the extraneous carbon as well as metal-containing residual catalyst particles. The process employs steps including a gas-phase oxidation of the amorphous carbon and subsequent liquid-phase reaction of a halogen-containing acid with the metal-containing species. Optionally, the single-wall carbon nanotube material may be annealed dry or in the presence of moisture.
    Type: Application
    Filed: February 8, 2002
    Publication date: September 12, 2002
    Applicant: William Marsh Rice University
    Inventors: Richard E. Smalley, Robert H. Hauge, Wan-Ting Chiang
  • Publication number: 20020127169
    Abstract: A method for purifying a mixture comprising single-wall carbon nanotubes and amorphous carbon contaminate is disclosed. The method includes the steps of heating the mixture under oxidizing conditions sufficient to remove the amorphous carbon, followed by recovering a product comprising at least about 80% by weight of single-wall carbon nanotubes. A method for producing tubular carbon molecules of about 5 to 500 nm in length is also disclosed. The method includes the steps of cutting single-wall nanotube containing-material to form a mixture of tubular carbon molecules having lengths in the range of 5-500 nm and isolating a fraction of the molecules having substantially equal lengths. The nanotubes may be used, singularly or in multiples, in power transmission cables, in solar cells, in batteries, as antennas, as molecular electronics, as probes and manipulators, and in composites.
    Type: Application
    Filed: December 28, 2001
    Publication date: September 12, 2002
    Applicant: William Marsh Rice University
    Inventors: Richard E. Smalley, Daniel T. Colbert, Hongjie Dai, Jie Liu, Andrew G. Rinzler, Jason H. Hafner, Ken Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
  • Publication number: 20020127162
    Abstract: A method for purifying a mixture comprising single-wall carbon nanotubes and amorphous carbon contaminate is disclosed. The method includes the steps of heating the mixture under oxidizing conditions sufficient to remove the amorphous carbon, followed by recovering a product comprising at least about 80% by weight of single-wall carbon nanotubes. A method for producing tubular carbon molecules of about 5 to 500 nm in length is also disclosed. The method includes the steps of cutting single-wall nanotube containing-material to form a mixture of tubular carbon molecules having lengths in the range of 5-500 nm and isolating a fraction of the molecules having substantially equal lengths The nanotubes may be used, singularly or in multiples, in power transmission cables, in solar cells, in batteries, as antennas, as molecular electronics, as probes and manipulators, and in composites.
    Type: Application
    Filed: December 28, 2001
    Publication date: September 12, 2002
    Applicant: William Marsh Rice University
    Inventors: Richard E. Smalley, Daniel T. Colbert, Hongjie Dai, Jie Liu, Andrew G. Rinzler, Jason H. Hafner, Ken Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
  • Publication number: 20020109087
    Abstract: Macroscopically manipulable nanoscale devices made from nanotube assemblies are disclosed. The article of manufacture comprises a macroscopic mounting element capable of being manipulated or observed in a macroscale environment, and a nanoscale nanotube assembly attached to the mounting element. The article permits macroscale information to be provided to or obtained from a nanoscale environment. A method for making a macroscopically manipulable nanoscale devices comprises the steps of (1) providing a nanotube-containing material; (2) preparing a nanotube assembly device having at least one carbon nanotube for attachment; and (3) attaching said nanotube assembly to a surface of a mounting element.
    Type: Application
    Filed: December 21, 2001
    Publication date: August 15, 2002
    Applicant: William Marsh Rice University
    Inventors: Daniel T. Colbert, Hongjie Dai, Jason H. Hafner, Andrew G. Rinzler, Richard E. Smalley
  • Publication number: 20020109086
    Abstract: Macroscopically manipulable nanoscale devices made from nanotube assemblies are disclosed. The article of manufacture comprises a macroscopic mounting element capable of being manipulated or observed in a macroscale environment, and a nanoscale nanotube assembly attached to the mounting element. The article permits macroscale information to be provided to or obtained from a nanoscale environment. A method for making a macroscopically manipulable nanoscale devices comprises the steps of (1) providing a nanotube-containing material; (2) preparing a nanotube assembly device having at least one carbon nanotube for attachment; and (3) attaching said nanotube assembly to a surface of a mounting element.
    Type: Application
    Filed: December 21, 2001
    Publication date: August 15, 2002
    Applicant: William Marsh Rice University
    Inventors: Daniel T. Colbert, Hongjie Dai, Jason H. Hafner, Andrew G. Rinzler, Richard E. Smalley
  • Patent number: 6428811
    Abstract: A thermally sensitive polymer-particle composite that absorbs electromagnetic radiation, and uses the absorbed energy to trigger the delivery of a chemical is disclosed. Metal nanoshells are nanoparticulate materials that are suitable for use in the present composites and can be made according to a process that includes optically tuning or tailoring their maximum optical absorption to any desired wavelength primarily by altering the ratio of the core diameter to the shell thickness. Preferred nanoshells are selected that strongly absorb light in the near-infrared and thus produce heat. These nanoshells are combined with a temperature-sensitive material to provide an implantable or injectable material for modulated drug delivery via external exposure to near-IR light. This invention provides a means to improve the quality of life for persons requiring multiple injections of a drug, such as diabetes mellitus patients.
    Type: Grant
    Filed: July 14, 2000
    Date of Patent: August 6, 2002
    Assignee: WM. Marsh Rice University
    Inventors: Jennifer L. West, Scott R. Sershen, Nancy J. Halas, Steven J. Oldenburg, Richard D. Averitt
  • Patent number: 6428762
    Abstract: Carbon nitride powder prepared by solid-state reaction between cyanuric chloride or its fluoro analogue and lithium nitride. The determined, by elemental analysis, atomic N/C ratio (1.33) in the synthesized material is consistent with C3N4 stoichiometry. Combined material characterization data, obtained by FTIR, Raman, UV-Vis, (13C) MAS NMR, XPS, TGA/DTA and pyrolysis-EIMS methods, provide substantial evidence for graphite-like sp2-bonded structure composed of building blocks of s-triazine rings bridged by the three-fold coordinated nitrogen atoms in the bulk carbon nitride.
    Type: Grant
    Filed: July 27, 2000
    Date of Patent: August 6, 2002
    Assignee: William Marsh Rice University
    Inventors: Valery N. Khabashesku, John L. Margrave, John L. Zimmerman
  • Publication number: 20020102194
    Abstract: A gas-phase method for producing high yields of single-wall carbon nanotubes with high purity and homogeneity is disclosed. The method involves using preformed metal catalyst clusters to initiate and grow single-wall carbon nanotubes. In one embodiment, multi-metallic catalyst precursors are used to facilitate the metal catalyst cluster formation. The catalyst clusters are grown to the desired size before mixing with a carbon-containing feedstock at a temperature and pressure sufficient to initiate and form single-wall carbon nanotubes. The method also involves using small fullerenes and preformed sections of single-wall carbon nanotubes, either derivatized or underivatized, as seed molecules for expediting the growth and increasing the yield of single-wall carbon nanotubes. The multi-metallic catalyst precursors and the seed molecules may be introduced into the reactor by means of a supercritical fluid. In addition the seed molecules may be introduced into the reactor via an aerosol or smoke.
    Type: Application
    Filed: January 29, 2002
    Publication date: August 1, 2002
    Applicant: William Marsh Rice University
    Inventors: Richard E. Smalley, Robert H. Hauge, Peter Athol Willis, W. Carter Kittrell
  • Publication number: 20020102201
    Abstract: Macroscopically manipulable nanoscale devices made from nanotube assemblies are disclosed. The article of manufacture comprises a macroscopic mounting element capable of being manipulated or observed in a macroscale environment, and a nanoscale nanotube assembly attached to the mounting element. The article permits macroscale information to be provided to or obtained from a nanoscale environment. A method for making a macroscopically manipulable nanoscale devices comprises the steps of (1) providing a nanotube-containing material. (2) preparing a nanotube assembly device having at least one carbon nanotube for attachment; and (3) attaching said nanotube assembly to a surface of a mounting element.
    Type: Application
    Filed: December 21, 2001
    Publication date: August 1, 2002
    Applicant: William Marsh Rice University
    Inventors: Daniel T. Colbert, Hongjie Dai, Jason H. Hafner, Andrew G. Rinzler, Richard E. Smalley
  • Publication number: 20020102193
    Abstract: The present invention discloses a gas-phase method for producing high yields of single-wall carbon nanotubes with high purity and homogeneity. The method involves separating the step of catalyst cluster formation from initiation and growth of the single-wall carbon nanotubes. The method involves reacting catalyst precursors and forming catalyst clusters of the size desirable to promote initiation and growth of single-wall carbon nanotubes prior to mixing with a carbon-containing feedstock at a reaction temperature and pressure sufficient to produce single-wall carbon nanotubes. The catalyst cluster reactions may be initiated either by rapid heating or by photolysis by high energy electromagnetic radiation, such as a laser, or both. The carbon feedstock gas for single-wall carbon nanotube synthesis is preferably CO or methane, catalyzed by the catalyst clusters, preferably iron or a combination of iron and nickel.
    Type: Application
    Filed: January 29, 2002
    Publication date: August 1, 2002
    Applicant: William Marsh Rice University
    Inventors: Richard E. Smalley, Martin P. Grosboll, Peter Athol Willis, W. Carter Kittrell
  • Publication number: 20020102196
    Abstract: This invention relates generally to compositions and articles of manufacturing comprising single-wall carbon nanotubes (SWNTs). Tubular single-wall carbon nanotube molecules are useful for making electrical connectors for devices such as integrated circuits or semiconductor chips used in computers because of the high electrical conductivity and small size of the carbon molecule. SWNT molecules are also useful as components of electrical devices where quantum effects dominate at room temperatures, for example, resonant tunneling diodes. The metallic carbon molecules are useful as antennas at optical frequencies, and as probes for scanning probe microscopy such as are used in scanning tunneling microscopes (STM) and atomic force microscopes (AFM). Tubular carbon molecules may also be used in RF shielding applications, e.g., to make microwave absorbing materials.
    Type: Application
    Filed: December 28, 2001
    Publication date: August 1, 2002
    Applicant: William Marsh Rice University
    Inventors: Richard E. Smalley, Daniel T. Colbert, Hongjie Dai, Jie Liu, Andrew G. Rinzler, Jason H. Hafner, Ken Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
  • Publication number: 20020102203
    Abstract: A gas-phase method for producing high yields of single-wall carbon nanotubes with high purity and homogeneity is disclosed. The method involves using preformed metal catalyst clusters to initiate and grow single-wall carbon nanotubes. In one embodiment, multi-metallic catalyst precursors are used to facilitate the metal catalyst cluster formation. The catalyst clusters are grown to the desired size before mixing with a carbon-containing feedstock at a temperature and pressure sufficient to initiate and form single-wall carbon nanotubes. The method also involves using small fullerenes and preformed sections of single-wall carbon nanotubes, either derivatized or underivatized, as seed molecules for expediting the growth and increasing the yield of single-wall carbon nanotubes. The multi-metallic catalyst precursors and the seed molecules may be introduced into the reactor by means of a supercritical fluid. In addition the seed molecules may be introduced into the reactor via an aerosol or smoke.
    Type: Application
    Filed: January 29, 2002
    Publication date: August 1, 2002
    Applicant: William Marsh Rice University
    Inventors: Richard E. Smalley, Robert H. Hauge, Peter Athol Willis, W. Carter Kittrell
  • Publication number: 20020098135
    Abstract: This invention relates generally to forming an array of single-wall carbon nanotubes (SWNT). In one embodiment, a macroscopic molecular array is provided comprising at least about 106 single-wall carbon nanotubes in generally parallel orientation and having substantially similar lengths in the range of from about 5 to about 500 nanometers.
    Type: Application
    Filed: December 28, 2001
    Publication date: July 25, 2002
    Applicant: William Marsh Rice University
    Inventors: Richard E. Smalley, Daniel T. Colbert, Hongjie Dai, Jie Liu, Andrew G. Rinzler, Jason H. Hafner, Ken Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
  • Publication number: 20020096634
    Abstract: Macroscopically manipulable nanoscale devices made from nanotube assemblies are disclosed. The article of manufacture comprises a macroscopic mounting element capable of being manipulated or observed in a macroscale environment, and a nanoscale nanotube assembly attached to the mounting element. The article permits macroscale information to be provided to or obtained from a nanoscale environment, A method for making a macroscopically manipulable nanoscale devices comprises the steps of (1) providing a nanotube-containing material; (2) preparing a nanotube assembly device having at least one carbon nanotube for attachment; and (3) attaching said nanotube assembly to a surface of a mounting element.
    Type: Application
    Filed: December 21, 2001
    Publication date: July 25, 2002
    Applicant: William Marsh Rice University
    Inventors: Daniel T. Colbert, Hongjie Dai, Jason H. Hafner, Andrew G. Rinzler, Richard E. Smalley