Abstract: An instrument, method, use and software program to obtain information rapidly about microorganisms that may spread uncontrolled in hospitals, water supply, food or when used in bio terrorism are described. Vibrational spectroscopy provides data to a computer linked to one or more databases. Comparison of the spectral data and information retrieved from the databases is used to identify and classify the microorganisms, applying suitable algorithms, which algorithms are self-generating and self-adapting to new spectroscopic data. The system may alert for the detection of an outbreak or to take disinfection measures. Changes in the traditional taxonomic division of microorganisms have no influence on the instrument. It does not rely on an a priori knowledge about the taxonomic classification of the microbial strain, is straightforward and easily integrated in routine microbial procedures.
Type:
Grant
Filed:
May 11, 2004
Date of Patent:
April 1, 2014
Assignee:
River Diagnostics B.V.
Inventors:
Gerwin Jan Puppels, Tom Bakker Schut, Kornelis Maquelin
Abstract: A Raman spectrum is measured inside animal tissue, such us human skin tissue, at a selected depth from a surface the tissue. A pH value is computed using a function that assigns a pH value as a function of the measured Raman spectrum. The computation may involve computing a number representing a ratio of concentrations of a protonated and a deprotonated version of a chemical substance from the Raman spectrum and generating pH information on the basis of said number. The chemical substance is for example a form of Urocanic acid (UCA). UV exposure is measured from the weight of the spectrum of cis-UCA.
Type:
Grant
Filed:
February 28, 2002
Date of Patent:
February 2, 2010
Assignee:
River Diagnostics B.V.
Inventors:
Gerwin Jan Puppels, Peter Jacobus Caspers, Gerhardus Wilhelmus Lucassen
Abstract: The invention is related to the instrument for measuring a Raman signal of tissue, the instrument comprising a laser, a signal detection unit for measuring the Raman signal, and a fiber optic probe, wherein the fiber optic probe comprises one or more optical fibers for directing laser light onto the tissue and for collecting light that is scattered by the tissue and guiding the collected light away from the tissue towards the signal detection unit, wherein the fiber or fibers for collecting light have substantially no Raman signal in one or more parts of the 2500-3700 cm?1 spectral region, and wherein the detection unit records the Raman signal scattered by the tissue in said spectral region. The invention enables ex vivo, in vitro and in vivo analysis and diagnosis of atherosclerotic plaque and detection of tumor tissue with great advantages over current state-of-the-art technology.
Type:
Grant
Filed:
December 2, 2003
Date of Patent:
March 3, 2009
Assignee:
River Diagnostics B.V.
Inventors:
Gerwin Jan Puppels, Rolf Wolthuis, Senada Koljenovic
Abstract: The spectrum of light, inelastically scattered by a sample (16) is measured. The light is guided through a capillary (12) from and to the sample, at least in one of these directions, through the channel no inelastic scattering of light occurs which can form an interfering background when measuring on the sample. By guiding the light through the channel, inelastic scattering of this light is prevented and it becomes possible to guide scattered light back through the channel to spectral analysis equipment (14) without problems with inelastic scattering during the guidance of the light. Preferably, the light is guided through the channel of the capillary in both directions.
Abstract: Incoming light is spectrally analyzed by diffracting the incoming light with a grating. At least a part of the incoming light is split off so that this part contains mainly one polarization component of the incoming light. It is ensured that this split-off part and a remaining part of the incoming light reach the grating with their polarized component mainly parallel to a main direction of polarization which is diffracted with maximal efficiency by the grating. For this purpose, at least the split-off part is diffracted after being passed through a polarization rotating element.