Patents Assigned to Robert Gordon University
-
Patent number: 9216036Abstract: A tissue anchor insertion system for inserting a tissue anchor into a body tissue such as bone, comprising a cutting device having a sharp leading end to create an aperture in the bone for insertion of the tissue anchor therein. The cutting device is deployed through a sleeve which is a close fit with the cutting device. The distal end of the sleeve is typically configured to penetrate the tissue in which the tissue anchor is to be inserted. A tissue anchor is also deployed through the sleeve, after the sleeve is in position, on a delivery device configured to support the tissue anchor during its insertion into the tissue. Typically the leading end of the sleeve is embedded within the tissue when the tissue anchor emerges from the distal end during the insertion process, so the tissue anchor is not damaged by insertion through the tissue.Type: GrantFiled: April 23, 2010Date of Patent: December 22, 2015Assignee: The Robert Gordon UniversityInventor: Alan John Johnstone
-
Patent number: 8501151Abstract: The present invention discloses a method, apparatus and method of manufacturing an apparatus; all to produce hydrogen gas, particularly synthesis gas. Preferred embodiments of the invention include an alpha alumina membrane which has been treated with a TiO2 wash coat on one side and has an active gamma alumina layer on an opposite side. A metal catalyst, preferably rhodium, is deposited within the pores of the alumina. Oxygen travels through the membrane and is activated before contacting methane on the other side of the membrane and forming synthesis gas through partial oxidation of the methane. Embodiments of the invention have a number of benefits including the high conversion rate of oxygen (100%), the separate feed streams of methane and oxygen which allow for optimal ratios to be used without danger of explosion, and the opportunity to vary the feed rates without changing the products formed.Type: GrantFiled: November 18, 2009Date of Patent: August 6, 2013Assignee: The Robert Gordon UniversityInventors: Edward Gobina, Susanne Olsen
-
Patent number: 8273922Abstract: A process utilising the gases carbon monoxide, carbon dioxide and hydrogen to produce alcohols directly, comprises the steps of bringing a fluid mixture comprising carbon monoxide, carbon dioxide and hydrogen into contact with the surfaces of a supported tubular porous catalyst membrane having a range of pore sizes including micropores, mesopores and macropores, controlling the temperature of the said catalyst membrane, maintaining a pressure over said catalyst membrane of from 88 to 600 kPa, and recovering alcohol containing product formed by contact of the fluid mixture with said catalyst membrane.Type: GrantFiled: September 19, 2008Date of Patent: September 25, 2012Assignee: The Robert Gordon UniversityInventors: Edward Gobina, Reuben Mfon Umoh
-
Publication number: 20100172809Abstract: The present invention discloses a method, apparatus and method of manufacturing an apparatus; all to produce hydrogen gas, particularly synthesis gas. Preferred embodiments of the invention include an alpha alumina membrane which has been treated with a TiO2 wash coat on one side and has an active gamma alumina layer on an opposite side. A metal catalyst, preferably rhodium, is deposited within the pores of the alumina. Oxygen travels through the membrane and is activated before contacting methane on the other side of the membrane and forming synthesis gas through partial oxidation of the methane. Embodiments of the invention have a number of benefits including the high conversion rate of oxygen (100%), the separate feed streams of methane and oxygen which allow for optimal ratios to be used without danger of explosion, and the opportunity to vary the feed rates without changing the products formed.Type: ApplicationFiled: November 18, 2009Publication date: July 8, 2010Applicant: Robert Gordon UniversityInventors: Edward Gobina, Susanne Olsen
-
Patent number: 7611307Abstract: The apparatus may include a space frame on which is mounted at least one hydrofoil for generating positive or negative lift. The frame is attachable to underwater equipment such as a turbine. The hydrofoils are adapted to produce negative lift when a flow of liquid passes over them and so in use cause the apparatus and attached equipment to sink to the seabed. The flow of water over the hydrofoils continue to produce negative life and so maintain the apparatus on the seabed. In certain embodiments, the hydrofoils can typically be set to a passive configuration in which they flip over when the current flow changes direction. Furthermore, the hydrofoils are selectively rotatable to provide an angle of attack such that they may be adapted to provide positive lift when it is necessary to remove the apparatus from the water.Type: GrantFiled: April 23, 2007Date of Patent: November 3, 2009Assignee: Robert Gordon UniversityInventors: Alan Owen, Ian Gordon Bryden
-
Publication number: 20090112211Abstract: A method of bone surgery including drilling a first bore in a near cortex of the bone with a first drill bit. Then a second drill bit is passed though the first bore towards a far cortex of the bone, the second drill bit comprising a distal shaft portion and a proximal shaft portion, the distal shaft portion having a diameter less than a diameter of the proximal shaft portion such that a shoulder is defined between the distal and proximal shaft portions. Then a second bore is drilled in the far cortex of the bone with the distal shaft portion of the second drill bit whilst the second drill bit is received in the first bore.Type: ApplicationFiled: March 24, 2008Publication date: April 30, 2009Applicant: The Robert Gordon UniversityInventor: Alan J. Johnstone
-
Patent number: 7389819Abstract: A screen system for underground wells, and a method of fluid flow control and/or sand production control in a well. The screen system may include an inner screen and an outer screen having a plurality of slots. A mechanism, which may include a motor, is provided to vary the size of the said slots, and may achieve this by rotating one end of the inner screen relative to the other end. An external screen shroud may also be provided and the rotatable mechanism may be controlled by a controller coupled to electromechanical sensors mounted on one or more portions of the screen system, where the controller may employ a solids prediction model and a plugging tendency model to calculate a control action.Type: GrantFiled: September 8, 2003Date of Patent: June 24, 2008Assignee: Robert Gordon UniversityInventors: Mufutau Babs Oyeneyin, Asher Mahmood
-
Patent number: 7297184Abstract: An apparatus and method to separate a mixture of gases—such as carbon dioxide and methane—by an inorganic membrane comprising a ceramic support and a silica layer made from a silicon elastomer sol. The apparatus and method can efficiently separate the gaseous mixture and can also cope with the extreme conditions found in e.g. hydrocarbon producing wells. A method of manufacturing the apparatus is also disclosed.Type: GrantFiled: January 10, 2006Date of Patent: November 20, 2007Assignee: Robert Gordon UniversityInventor: Edward Gobina
-
Patent number: 7275891Abstract: The apparatus may include a space frame on which is mounted at least one hydrofoil for generating positive or negative lift. The frame is attachable to underwater equipment such as a turbine. The hydrofoils are adapted to produce negative lift when a flow of liquid passes over them and so in use cause the apparatus and attached equipment to sink to the seabed. The flow of water over the hydrofoils continue to produce negative life and so maintain the apparatus on the seabed. In certain embodiments, the hydrofoils can typically be set to a passive configuration in which they flip over when the current flow changes direction. Furthermore, the hydrofoils are selectively rotatable to provide an angle of attack such that they may be adapted to provide positive lift when it is necessary to remove the apparatus from the water.Type: GrantFiled: September 5, 2003Date of Patent: October 2, 2007Assignee: Robert Gordon UniversityInventors: Alan Owen, Ian Gordon Bryden
-
Publication number: 20060239874Abstract: The present invention discloses a method, apparatus and method of manufacturing an apparatus; all to produce hydrogen gas, particularly synthesis gas. Preferred embodiments of the invention include an alpha alumina membrane which has been treated with a TiO2 wash coat on one side and has an active gamma alumina layer on an opposite side. A metal catalyst, preferably rhodium, is deposited within the pores of the alumina. Oxygen travels through the membrane and is activated before contacting methane on the other side of the membrane and forming synthesis gas through partial oxidation of the methane. Embodiments of the invention have a number of benefits including the high conversion rate of oxygen (100%), the separate feed streams of methane and oxygen which allow for optimal ratios to be used without danger of explosion, and the opportunity to vary the feed rates without changing the products formed. Normally gaseous hydrocarbons recovered from remote oil wells (e.g.Type: ApplicationFiled: April 28, 2004Publication date: October 26, 2006Applicant: Robert Gordon UniversityInventors: Edward Gobina, Susanne Olsen
-
Publication number: 20060112822Abstract: An apparatus and method to separate a mixture of gases—such as carbon dioxide and methane—by an inorganic membrane comprising a ceramic support and a silica layer made from a silicon elastomer sol. The apparatus and method can efficiently separate the gaseous mixture and can also cope with the extreme conditions found in e.g. hydrocarbon producing wells. A method of manufacturing the apparatus is also disclosed.Type: ApplicationFiled: January 10, 2006Publication date: June 1, 2006Applicant: Robert Gordon UniversityInventor: Edward Gobina
-
Patent number: 7048778Abstract: An apparatus and method to separate a mixture of gases, such as carbon dioxide and methane, by a ceramic membrane having a ceramic support and a silica layer. The invention can efficiently separate the gaseous mixture and can also cope with the extreme conditions found in, e.g., hydrocarbon producing wells. A method of manufacturing the apparatus is also disclosed.Type: GrantFiled: March 18, 2002Date of Patent: May 23, 2006Assignee: The Robert Gordon UniversityInventor: Edward Gobina