Patents Assigned to Rockefeller University
  • Patent number: 5767243
    Abstract: The invention relates to a novel human serum protein referred to as AFM, which has one or more activities in common with human serum albumin, human a-fetoprotein, or human vitamin D binding protein and which has an apparent molecular weight by SDS-PAGE of 87 kd; variants thereof; and related genes, vectors, cells and methods.
    Type: Grant
    Filed: March 13, 1997
    Date of Patent: June 16, 1998
    Assignees: Amgen Inc., The Rockefeller University
    Inventors: Henri Stephen Lichenstein, David Edwin Lyons, Mark Matsuo Wurfe, Samuel Donald Wright
  • Patent number: 5760186
    Abstract: Antibodies to an inflammatory cytokine are disclosed. The inflammatory cytokine has been isolated from cells that have been incubated with a stimulator material and comprises a protein that is capable of binding to heparin, inducing localized inflammation characterized by polymorphonuclear cell infiltration when administered subcutaneously and inducing in vitro polymorphonuclear cell chemokinesis, while lacking the ability to suppress the activity of the anabolic enzyme lipoprotein lipase, cause the cytotoxicity of cachectin/TNF-sensitive cells, stimulate the blastogenesis of endotoxin-resistant C3H/HeJ thymocytes, or induce the production of cachectin/TNF by primary thioglycollate-elicited mouse macrophage cells. A particular inflammatory cytokine MIP-1 has been isolated and has been found to comprise a peptide doublet of similar molecular weights of about 8,000 daltons, and to show a pI of about 4.6. The doublet has been resolved into its component peptides, MIP-1.alpha. and MIP-1.beta.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: June 2, 1998
    Assignee: The Rockefeller University
    Inventors: Anthony Cerami, Bruce Beutler, Stephen D. Wolpe
  • Patent number: 5747287
    Abstract: The present invention relates, in general, to a method for the high level expression of the outer membrane protein meningococcal group B porin proteins and fusion proteins thereof. In particular, the present invention relates to a method of expressing the outer membrane protein meningococcal group B porin proteins in E. coli wherein the meningococcal group B porin proteins and fusion proteins thereof comprise more than 2% of the total protein expressed in E. coli. The invention also relates to a method of purification and refolding of the meningococcal group B porin proteins and fusion proteins thereof and to their use in vaccines.
    Type: Grant
    Filed: June 17, 1997
    Date of Patent: May 5, 1998
    Assignees: North American Vaccine, Inc., The Rockefeller University
    Inventors: Milan S. Blake, Joseph Y. Tai, Huilin L. Qi, Shu-Mei Liang, Lucjan J. J. Hronowski, Jeffrey K. Pullen
  • Patent number: 5741484
    Abstract: An inflammatory cytokine is disclosed which has been isolated from cells that have been incubated with a stimulator material. The inflammatory cytokine comprises a protein that is capable of binding to heparin, inducing localized inflammation characterized by polymorphonuclear cell infiltration when administered subcutaneously and inducing in vitro polymorphonuclear cell chemokinesis, while lacking the ability to suppress the activity of the anabolic enzyme lipoprotein lipase, cause the cytotoxicity of cachectin/TNF-sensitive cells, stimulate the blastogenesis of endotoxin-resistant C3H/HeJ thymocytes, or induce the production of cachectin/TNF by primary thioglycollate-elicited mouse macrophage cells. A particular inflammatory cytokine MIP-1 has been isolated and has been found to comprise a peptide doublet of similar molecular weights of about 8,000 daltons, and to show a pI of about 4.6. The doublet has been resolved into its component peptides, MIP-1.alpha. and MIP-1.beta.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: April 21, 1998
    Assignee: The Rockefeller University
    Inventors: Anthony Cerami, Bruce Beutler, Stephen D. Wolpe
  • Patent number: 5733730
    Abstract: The present invention relates to a novel nucleotide sequence encoding a telomeric protein which binds a repeat region of telomeric sequences, and to the protein encoded thereby. Also included within the invention are expression vectors for the production of the telomeric protein and host cells transformed with the nucleotide sequence. In addition, antibodies, probes and antagonists specific for the telomeric protein are contemplated. Methods of identifying antagonists of the telomeric protein, diagnostic methods of identifying the telomeric protein in a sample, and therapeutic uses of the telomeric protein, particularly in the treatment of aging and cancer, are also contemplated.
    Type: Grant
    Filed: August 25, 1995
    Date of Patent: March 31, 1998
    Assignee: The Rockefeller University
    Inventor: Titia De Lange
  • Patent number: 5733546
    Abstract: The circulating advanced glycosylation endproducts Hb-AGE, serum AGE-peptides and urinary AGE-peptides are disclosed as long term markers of diseases and dysfunctions having as a characteristic the presence of a measurable difference in AGE concentration. Diagnostic and therapeutic protocols taking advantage of the characteristics of these AGEs are disclosed. Antibodies which recognize and bind to in vivo-derived advanced glycosylation endproducts are also disclosed. Methods of using these antibodies as well as pharmaceutical compositions are also disclosed, along with numerous diagnostic applications, including methods for the measurement of the presence and amount of advanced glycosylation endproducts in both plants and animals, including humans, as well as in cultivated and systhesized protein material for therapeutic use.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: March 31, 1998
    Assignee: The Rockefeller University
    Inventor: Richard J. Bucala
  • Patent number: 5723751
    Abstract: The present invention relates to the use of DNA sequence motifs to regulate gene expression in a tissue- or developmental-specific manner in transgenic plants. The invention generally relates to the engineering and use of G-box related sequence motifs, specifically Iwt and PA motifs, which function as cis-elements of promoters, to regulate the expression of heterologous genes in transgenic plants. PA enhances high level expression in roots, low level expression in leaves and little or no expression in seeds. By contrast, Iwt confers preferential expression in seeds, but in a developmentally-regulated manner.
    Type: Grant
    Filed: January 24, 1995
    Date of Patent: March 3, 1998
    Assignee: The Trustees of Rockefeller University
    Inventor: Nam-Hai Chua
  • Patent number: 5723303
    Abstract: The subject invention concerns a novel polynucleotide sequence cloned from emm2.2 gene of a Group A streptococcus, Type II strain which codes for an IgA-binding protein, ML2.2. The subject invention further concerns the novel IgA-binding protein. A process for producing the protein is given. The invention also concerns the protein in an immunoadsorbent and as a tracer for use in measuring and purifying IgA. Kits are given comprising the immunoadsorbent and the tracer form of the protein.
    Type: Grant
    Filed: June 14, 1996
    Date of Patent: March 3, 1998
    Assignee: Rockefeller University
    Inventors: Vincent A. Fischetti, Debra E. Bessen
  • Patent number: 5716622
    Abstract: The present invention relates generally to intracellular receptor recognition proteins or factors, termed Signal Transducers and Activators of Transcription (STAT), to methods and compositions utilizing such factors, and to the antibodies reactive toward them, in assays and for diagnosing, preventing and/or treating cellular debilitation, derangement or dysfunction. More particularly, the present invention relates to particular functional domains of molecules that exhibit both receptor recognition and message delivery via DNA binding in receptor-ligand specific manner, i.e., that directly participate both in the interaction with the ligand-bound receptor at the cell surface and in the activity of transcription in the nucleus as a DNA binding protein. The invention likewise relates to the antibodies and other entities that are specific to the functional domain of a STAT protein and that would thereby selectively modulate its activity.
    Type: Grant
    Filed: January 6, 1995
    Date of Patent: February 10, 1998
    Assignee: The Rockefeller University
    Inventors: James E. Darnell, Jr., Zilong Wen, Curt M. Horvath, Zhong Zhong
  • Patent number: 5717074
    Abstract: An antibody to an inflammatory cytokine is disclosed. The inflammatory cytokine has been isolated from cells that have been incubated with a stimulator material. The inflammatory cytokine is capable of binding to heparin, inducing localized inflammation characterized by polymorphonuclear cell infiltration when administered subcutaneously and having potent in vitro chemotactic activity while inducing little or no in vitro chemokinesis in polymorphonuclear cells, while lacking the ability to suppress the activity of the anabolic enzyme lipoprotein lipase, cause the cytotoxicity of cachectin/TNF-sensitive cells, stimulate the blastogenesis of endotoxin-resistant C3H/HeJ thymocytes, or induce the production of cachectin/TNF by primary thioglycbllate-elicited mouse macrophage cells. A particular inflammatory cytokine has been isolated and its cDNA has been sequenced. The sequence predicts a cDNA of 74 amino acids in length and a molecular weight of 7,908.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: February 10, 1998
    Assignee: The Rockefeller University
    Inventors: Stephen D. Wolpe, Anthony Cerami, Barbara Sherry
  • Patent number: 5714467
    Abstract: The invention relates to antibacterial and antimalarial peptides which are hybrids peptides which a of naturally occurring peptides such as cecropins, attacins, magainins, sarcotoxin, sapecin, bactenecins, alamethidicins, defensins and PGLa, and toxins such as streptolysins, melittin, barbatolysin, paradaxins and delta hemolysin. The hybrid peptides of the present invention are easily synthesized and have reduced toxicity. Also included in the invention are pharmaceutical compositions containing such hybrid peptides, and methods of treating patients infected with an organism against which these peptides are active.
    Type: Grant
    Filed: March 26, 1993
    Date of Patent: February 3, 1998
    Assignee: The Rockefeller University
    Inventors: Hans G. Boman, Robert B. Merrifield, David Andreu
  • Patent number: 5712101
    Abstract: The circulating advanced glycosylation endproducts Hb-AGE, serum AGE-peptides and urinary AGE-peptides are disclosed as long term markers of diseases and dysfunctions having as a characteristic the presence of a measurable difference in AGE concentration. Diagnostic and therapeutic protocols taking advantage of the characteristics of these AGEs are disclosed. Antibodies which recognize and bind to in vivo-derived advanced glycosylation endproducts are also disclosed. Methods of using these antibodies as well as pharmaceutical compositions are also disclosed, along with numerous diagnostic applications, including methods for the measurement of the presence and amount of advanced glycosylation endproducts in both plants and animals, including humans, as well as in cultivated and systhesized protein material for therapeutic use.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: January 27, 1998
    Assignee: The Rockefeller University
    Inventor: Richard J. Bucala
  • Patent number: 5707822
    Abstract: Methods and compositions are provided for cloning and expression of serum opacity factor of Streptococcus pyogenes genes. The portion produced by the recombinant DNA techniques described herein may be employed in qualitative and quantitative testing for high density lipoprotein, as a fibronectin binding factor and for the regulation of high density lipoprotein in a mammal. The gene may further be employed as a molecular probe for accurate identification of opacity factors from various strains of Streptococcus pyogenes.
    Type: Grant
    Filed: August 22, 1994
    Date of Patent: January 13, 1998
    Assignee: The Rockefeller University
    Inventors: Vincent A. Fischetti, Jasna Rakonjac, John Robbins
  • Patent number: 5705367
    Abstract: The present invention is directed to nucleic acids encoding glycosyltransferases, the proteins encoded thereby, and to methods for synthesizing oligosaccharides using the glycosyltransferases of the invention. In particular, the present application is directed to identification a glycosyltransferase locus of Neisseria gonorrhoeae containing five open reading frames for five different glycosyltransferases. The functionally active glycosyltransferases of the invention are characterized by catalyzing reactions such as adding Gal .beta..fwdarw.4 to GlcNAc or Glc; adding GalNAc or GlcNAc .beta.1.fwdarw.3 to Gal; and adding Gal .alpha.1.fwdarw.4 to Gal. The glycosyltransferases of the invention are particularly suited to the synthesis of the oligosaccharides Gal.beta.1.fwdarw.4GlcNAc.beta.1.fwdarw.3Gal.beta.1.fwdarw.4Glc (a mimic of lacto-N-neotetraose), GalNAc.beta.1.fwdarw.3Gal.beta.1.fwdarw.4GlcNAc.beta.1.fwdarw.3Gal.beta.1. fwdarw.4Glc.beta.1.fwdarw.4 (a mimic ganglioside), and Gal.alpha.1.fwdarw.4Gal.beta.1.
    Type: Grant
    Filed: July 18, 1996
    Date of Patent: January 6, 1998
    Assignee: The Rockefeller University
    Inventor: Emil C. Gotschlich
  • Patent number: 5702704
    Abstract: The circulating advanced glycosylation endproducts Hb-AGE, serum AGE-peptides and urinary AGE-peptides are disclosed as long term markers of diseases and dysfunctions having as a characteristic the presence of a measurable difference in AGE concentration. Diagnostic and therapeutic protocols taking advantage of the characteristics of these AGEs are disclosed. Antibodies which recognize and bind to in vivo-derived advanced glycosylation endproducts are also disclosed. Methods of using these antibodies as well as pharmaceutical compositions are also disclosed, along with numerous diagnostic applications, including methods for the measurement of the presence and amount of advanced glycosylation endproducts in both plants and animals, including humans, as well as in cultivated and systhesized protein material for therapeutic use.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: December 30, 1997
    Assignee: The Rockefeller University
    Inventor: Richard J. Bucala
  • Patent number: 5700466
    Abstract: The present invention pertains to the novel hybridoma SDW18.1.1, hybridomas obtained from SDW18.1.1, monoclonal antibodies obtained from such hybridomas and derivatives of such monoclonal antibodies. The novel hybridomas are formed by fusion of cells from a mouse myeloma line and spleen cells from a mouse previously immunized with cachectin/TNF. Diagnostic and therapeutic utilities for the monoclonal antibodies and their derivatives are proposed, and testing procedures, materials in kit form and pharmaceutical compositions are likewise set forth.
    Type: Grant
    Filed: December 2, 1994
    Date of Patent: December 23, 1997
    Assignee: The Rockefeller University
    Inventors: Stephen D. Wolpe, Anthony Cerami
  • Patent number: 5698419
    Abstract: The present invention pertains to the novel hybridoma SDW18.1.1, hybridomas obtained from SDW18.1.1, monoclonal antibodies obtained from such hybridomas and derivatives of such monoclonal antibodies. The novel hybridomas are formed by fusion of cells from a mouse myeloma line and spleen cells from a mouse previously immunized with cachectin/TNF. Diagnostic and therapeutic utilities for the monoclonal antibodies and their derivatives are proposed, and testing procedures, materials in kit form and pharmaceutical compositions are likewise set forth.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: December 16, 1997
    Assignee: The Rockefeller University
    Inventors: Stephen D. Wolpe, Anthony Cerami
  • Patent number: 5693488
    Abstract: The present invention relates to regulation and control of cellular processes by transmembrane protein tyrosine phosphatases, and to ligands that agonize or antagonize tyrosine phosphorylation mediated by such tyrosine phosphatases. This invention further relates to diagnosis and therapy based on the activity of such ligands. In particular, the invention provides a novel transmembrane protein tyrosine phosphatase-.lambda. (PTP.lambda.), nucleic acids encoding the same, antibodies to the PTP.lambda., and methods for identifying ligands to the PTP.lambda. of the invention. A specific Example describes the isolation and characterization of the first chicken transmembrane PTP, called ChPTP.lambda.. It has a unique extracellular domain containing a Ser/Thr/Pro-rich region, spectrin-like repeats, a fibronectin III domain, and an alternatively spliced N-terminus. The expression of ChPTP.lambda. in various tissues and cells was also examined. ChPTP.lambda.
    Type: Grant
    Filed: May 12, 1994
    Date of Patent: December 2, 1997
    Assignee: The Rockefeller University
    Inventors: Kathy S. Fang, Hidesaburo Hanafusa
  • Patent number: 5686649
    Abstract: Disclosed is a novel method of suppressing plant gene expression. The suppression is achieved by transforming a plant with a DNA construct encoding a processing-defective RNA (pd-RNA constructs). A pd-RNA construct comprises a plant active promoter operably linked to a pd-RNA encoding segment (pd-RNA segment), wherein the pd-RNA segment comprises a sequence substantially homologous to the target gene and a defective intron and/or a defective 3' termination and processing sequence (hereinafter 3' processing sequence). The pd-RNA constructs of the present invention are designed to express target-gene-homologous RNA transcripts that are defective for messenger RNA processing. Various types of pd-RNA constructs are disclosed, including those defective for endonucleolytic cleavage or polyadenylation at the 3' end of the pd-RNA transcript and/or intron splicing. A pd-RNA construct of the invention may used to suppress a single, specific target gene or multiple target genes.
    Type: Grant
    Filed: January 19, 1995
    Date of Patent: November 11, 1997
    Assignee: The Rockefeller University
    Inventors: Nam-Hai Chua, Alexander van der Krol
  • Patent number: 5683887
    Abstract: The circulating advanced glycosylation endproducts Hb-AGE, serum AGE-peptides and urinary AGE-peptides are disclosed as long term markers of diseases and dysfunctions having as a characteristic the presence of a measurable difference in AGE concentration. Diagnostic and therapeutic protocols taking advantage of the characteristics of these AGEs are disclosed. Antibodies which recognize and bind to in vivo-derived advanced glycosylation endproducts are also disclosed. Methods of using these antibodies as well as pharmaceutical compositions are also disclosed, along with numerous diagnostic applications, including methods for the measurement of the presence and amount of advanced glycosylation endproducts in both plants and animals, including humans, as well as in cultivated and systhesized protein material for therapeutic use.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: November 4, 1997
    Assignee: The Rockefeller University
    Inventor: Richard J. Bucala