Patents Assigned to Rolith Inc
  • Patent number: 9465296
    Abstract: Embodiments of the invention relate to methods and apparatus useful in the nanopatterning of large area substrates, where a movable nanostructured film is used to image a radiation-sensitive material. The nanopatterning technique makes use of Near-Field photolithography, where the nanostructured film used to modulate light intensity reaching radiation-sensitive layer. The Near-Field photolithography may make use of an elastomeric phase-shifting mask, or may employ surface plasmon technology, where a movable film comprises metal nano holes or nanoparticles.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: October 11, 2016
    Assignee: Rolith, Inc.
    Inventor: Boris Kobrin
  • Patent number: 9244356
    Abstract: Embodiments of the present disclosure include a metal mesh structure and a method of fabrication thereof. The metal mesh structure includes a metal mesh formed on a substrate. The metal mesh is a 2D or 3D pattern of lines. The lines in the first and second set are characterized by a linewidth that is less than 2 microns. Such metal mesh structures are fabricated through rolling mask lithography. This abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: April 3, 2014
    Date of Patent: January 26, 2016
    Assignee: Rolith, Inc.
    Inventors: Boris Kobrin, Ian McMackin
  • Patent number: 9116430
    Abstract: In the proposed plasmonic nanolithography technique a transparent mask is brought into physical contact with a metal on a substrate that is coated with a photoresist. The mask is not made of metal or other material that supports surface plasmons. The metal layer is exposed to radiation of a characteristic vacuum wavelength through the mask and the photoresist or through the substrate. The mask features and the vacuum wavelength of the radiation are chosen so that the radiation excites surface plasmons at the interface between the metal and the photoresist. The excitation of surface plasmons allows for the exposure and generation of features which are well-below the free space diffraction limit and small compared to the size of the features in the mask.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: August 25, 2015
    Assignee: Rolith, Inc.
    Inventors: Boris Kobrin, Edward Barnard
  • Patent number: 9069244
    Abstract: Methods for fabricating nanopatterned cylindrical photomasks are disclosed. A master pattern having nanometer scale features may be formed on a master substrate. A layer of an elastomer material may be formed on a surface of a transparent cylinder. The master pattern may be transferred from the master to the layer of elastomer material on the surface of the transparent cylinder. Alternatively, a nanopatterned cylindrical photomask may be fabricated by forming a pattern having nanometer scale features on an elastomer substrate and laminating the patterned elastomer substrate to a surface of a cylinder. In another method, a layer of elastomer material may be formed on a surface of a transparent cylinder and a pattern having nanometer scale features may be formed on the elastomer material by a direct patterning process.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: June 30, 2015
    Assignee: Rolith, Inc.
    Inventor: Boris Kobrin
  • Publication number: 20140234780
    Abstract: Embodiments of the present invention are directed to techniques for obtaining patterns of features. One set of techniques uses multiple-pass rolling mask lithography to obtain the desired feature pattern. Another technique uses a combination of rolling mask lithography and a self-aligned plasmonic mask lithography to obtain a desired feature pitch.
    Type: Application
    Filed: April 24, 2014
    Publication date: August 21, 2014
    Applicant: ROLITH, INC.
    Inventors: Boris Kobrin, Mark Brongersma, Edward Barnard
  • Publication number: 20140212533
    Abstract: Aspects of the present disclosure describe cylindrical molds that may be used to produce cylindrical masks for use in lithography. A structured porous layer may be deposited on an interior surface of a cylinder. A radiation-sensitive material may be deposited over the porous layer in order to fill pores formed in the layer. The radiation-sensitive material in the pores may be cured by exposing the cylinder with a light source. The uncured resist and porous layer may be removed, leaving behind posts on the cylinder's interior surface. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: January 31, 2013
    Publication date: July 31, 2014
    Applicant: Rolith, Inc.
    Inventors: Boris Kobrin, Ian McMackin
  • Publication number: 20140212536
    Abstract: Aspects of the present disclosure include a cylindrical master mold assembly having a cylindrical patterned component with a first diameter and a sacrificial casting component with a second diameter. The component with the smaller radius may be co-axially inserted into the interior of the component with the larger radius. Patterned features may be formed on the interior surface of the cylindrical patterned component that faces the sacrificial casting component. The sacrificial casting component may be removed once a cast polymer has been cured to allow the polymer to be released. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: January 31, 2013
    Publication date: July 31, 2014
    Applicant: Rolith, Inc.
    Inventors: Boris Kobrin, Ian McMackin
  • Publication number: 20140202986
    Abstract: Rolling mask lithography may be performed to expose selected portions of a radiation sensitive layer to a radiation pattern that leaves selected portions of a top surface of the radiation sensitive layer resistant to development by a developer and non-selected portions susceptible to development by the developer. A structure of the selected portions is then rendered resistant to an etch process. The radiation sensitive layer is then flood exposed to a second radiation that leaves the radiation sensitive layer resistant to development by the developer. The radiation sensitive layer is then selectively etched using the etch-resistant selected portions as an etch mask.
    Type: Application
    Filed: January 24, 2013
    Publication date: July 24, 2014
    Applicant: Rolith, Inc.
    Inventors: Alfred Renaldo, Boris Kobrin
  • Publication number: 20140037920
    Abstract: A hard-to-dry-etch material may be patterned by forming a layer of dry-etchable material on a surface of the hard-to-dry etch substrate, and dry etching the dry-etchable material. The hard-to-dry etch substrate produces substantial quantities of non-volatile etch byproducts that redeposit when subject to the dry etching. The dry-etchable material has similar material properties to the hard-to-dry-etch substrate material is formed. The dry-etchable material is one that does not produce substantial quantities of non-volatile etch byproducts that redeposit when the dry-etchable material is subject to the dry etching. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: August 1, 2012
    Publication date: February 6, 2014
    Applicant: Rolith, Inc.
    Inventor: Boris Kobrin
  • Publication number: 20130224636
    Abstract: Methods for fabricating nanopatterned cylindrical photomasks are disclosed. A master pattern having nanometer scale features may be formed on a master substrate. A layer of an elastomer material may be formed on a surface of a transparent cylinder. The master pattern may be transferred from the master to the layer of elastomer material on the surface of the transparent cylinder. Alternatively, a nanopatterned cylindrical photomask may be fabricated by forming a pattern having nanometer scale features on an elastomer substrate and laminating the patterned elastomer substrate to a surface of a cylinder. In another method, a layer of elastomer material may be formed on a surface of a transparent cylinder and a pattern having nanometer scale features may be formed on the elastomer material by a direct patterning process.
    Type: Application
    Filed: February 14, 2013
    Publication date: August 29, 2013
    Applicant: Rolith, Inc.
    Inventor: Boris Kobrin
  • Patent number: 8518633
    Abstract: Embodiments of the invention relate to methods and apparatus useful in the nanopatterning of large area substrates, where a rotatable mask is used to image a radiation-sensitive material. Typically the rotatable mask comprises a cylinder. The nanopatterning technique makes use of Near-Field photolithography, where the mask used to pattern the substrate is in contact or close proximity with the substrate. The Near-Field photolithography may make use of an elastomeric phase-shifting mask, or may employ surface plasmon technology, where a rotating cylinder surface comprises metal nano holes or nanoparticles.
    Type: Grant
    Filed: April 1, 2009
    Date of Patent: August 27, 2013
    Assignee: Rolith Inc.
    Inventors: Boris Kobrin, Boris Volf, Igor Landau
  • Publication number: 20130208251
    Abstract: Embodiments of the invention relate to methods and apparatus useful in the nanopatterning of large area substrates, where a rotatable mask is used to image a radiation-sensitive material. Typically the rotatable mask comprises a cylinder. The nanopatterning technique makes use of Near-Field photolithography, where the mask used to pattern the substrate is in contact or close proximity with the substrate. The Near-Field photolithography may make use of an elastomeric phase-shifting mask, or may employ surface plasmon technology, where a rotating cylinder surface comprises metal nano holes or nanoparticles.
    Type: Application
    Filed: April 1, 2009
    Publication date: August 15, 2013
    Applicant: ROLITH, INC
    Inventors: Boris Kobrin, Boris Volf, Igor Landau
  • Patent number: 8425789
    Abstract: In anisotropic etching of the substrates, ultra-thin and conformable layers of materials can be used to passivate sidewalls of the etched features. Such a sidewall passivation layer may be a Self-assembled monolayer (SAM) material deposited in-situ etching process from a vapor phase. Alternatively, the sidewall passivation layer may be an inorganic-based material deposited using Atomic Layer Deposition (ALD) method. SAM or ALD s layer deposition can be carried out in a pulsing regime alternating with sputtering and/or etching processes using process gasses with or without plasma. Alternatively, SAM deposition is carried out continuously, while etch or sputtering turns on in a pulsing regime. Alternatively, SAM deposition and etch or sputtering may be carried out continuously.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: April 23, 2013
    Assignee: Rolith, Inc.
    Inventor: Boris Kobrin
  • Patent number: 8334217
    Abstract: Embodiments of the invention relate to a method of functional materials deposition using a polymer template fabricated on a substrate. Such template forms an exposed and masked areas of the substrate material, and can be fabricated using polymer resists or Self-assembled monolayers. Deposition is performed using an applicator, which is fabricated in the shape of cylinder or cone made of soft elastomeric materials or laminated with soft elastomeric film. Functional materials, for example, metals, semiconductors, sol-gels, colloids of particles are deposited on the surface of applicator using liquid immersion, soaking, contact with wetted surfaces, vapor deposition or other techniques. Then wetted applicator is contacted the surface of the polymer template and rolled over it's surface. During this dynamic contact functional material is transferred selectively to the areas of the template. Patterning of functional material is achieved by lift-off of polymeric template after deposition.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: December 18, 2012
    Assignee: Rolith Inc.
    Inventor: Boris Kobrin
  • Patent number: 8318386
    Abstract: Embodiments of the invention relate to methods useful in the fabrication of nanostructured devices for optics, energy generation, displays, consumer electronics, life sciences and medicine, construction and decoration. Instead of nanostructuring using colloids of particles, special vacuum deposition methods, laser interference systems (holography), and other low-throughput limited surface area techniques, we suggest to use nanotemplate created by novel nanolithography method, “Rolling mask” lithography. This method allows fast and inexpensive fabrication of nanostructures on large areas of substrate materials in conveyor-type continuous process. Such nanotemplate is then used for selective deposition of functional materials. One of embodiments explains deposition of functional materials in the exposed and developed areas of the substrate. Another embodiment uses selective deposition of the functional material on top of such template.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: November 27, 2012
    Assignee: Rolith Inc.
    Inventor: Boris Kobrin
  • Publication number: 20120282554
    Abstract: Embodiments of the invention relate to methods and apparatus useful in the nanopatterning of large area substrates, where a rotatable mask is used to image a radiation-sensitive material. Typically the rotatable mask comprises a cylinder. The nanopatterning technique makes use of Near-Field photolithography, where the mask used to pattern the substrate is in contact or close proximity with the substrate. The Near-Field photolithography may make use of an elastomeric phase-shifting mask, or may employ surface plasmon technology, where a rotating cylinder surface comprises metal nano holes or nanoparticles.
    Type: Application
    Filed: July 19, 2012
    Publication date: November 8, 2012
    Applicant: Rolith, Inc.
    Inventors: Boris Kobrin, Ian McMackin
  • Publication number: 20120274004
    Abstract: Embodiments of the invention relate to methods and apparatus useful in the nanopatterning of large area substrates, where a movable nanostructured film is used to image a radiation-sensitive material. The nanopatterning technique makes use of Near-Field photolithography, where the nanostructured film used to modulate light intensity reaching radiation-sensitive layer. The Near-Field photolithography may make use of an elastomeric phase-shifting mask, or may employ surface plasmon technology, where a movable film comprises metal nano holes or nanoparticles.
    Type: Application
    Filed: July 11, 2012
    Publication date: November 1, 2012
    Applicant: Rolith, Inc.
    Inventor: Boris Kobrin
  • Publication number: 20120224159
    Abstract: An apparatus to carry out patterning of a disk includes a rotatable mask having a cone shape and a nanopattern on an exterior surface of said mask and a radiation source configured to supply radiation of a wavelength of 436 nm or less from said nanopattern, while said nanopattern is in contact with a radiation-sensitive layer of material. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: May 15, 2012
    Publication date: September 6, 2012
    Applicant: ROLITH, INC.
    Inventor: BORIS KOBRIN
  • Publication number: 20120162629
    Abstract: Embodiments of the invention relate to methods and apparatus useful in the nanopatterning of large area substrates, where a rotatable mask is used to image a radiation-sensitive material. Typically the rotatable mask comprises a cylinder. The nanopatterning technique makes use of Near-Field photolithography, where the mask used to pattern the substrate is in contact or close proximity with the substrate. The Near-Field photolithography may make use of an elastomeric phase-shifting mask, or may employ surface plasmon technology, where a rotating cylinder surface comprises metal nano holes or nanoparticles.
    Type: Application
    Filed: March 9, 2012
    Publication date: June 28, 2012
    Applicant: Rolith, Inc.
    Inventor: Boris Kobrin
  • Patent number: 8192920
    Abstract: Embodiments of the invention relate to lithography method useful for patterning at sub-micron resolution. This method comprised of deposition and patterning self-assembled monolayer resists using rolling applicator and rolling mask exposure apparatus. Typically the application of these self-assembled monolayers involves contacting substrate materials with a rotatable applicator in the shape of cylinder or cone wetted with precursor materials. The nanopatterning technique makes use of Near-Field photolithography, where the mask used to pattern the substrate is in contact with self-assembled monolayer. The Near-Field photolithography may make use of an elastomeric phase-shifting mask, or may employ surface plasmon technology, where a rotating mask surface comprises metal nano holes or nanoparticles.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: June 5, 2012
    Assignee: Rolith Inc.
    Inventor: Boris Kobrin