Patents Assigned to Rolls-Royce plc
-
Patent number: 11788616Abstract: A journal bearing comprising a first component and a second component, the first and second components being arranged to rotate relative to one another in normal use. The first component comprises a first body, a first layer forming a functional surface facing the second component, and a first subsurface layer between the body and the layer. The first subsurface layer is formed of a material having a first coefficient of thermal expansion in the radial direction, and the first body is formed of a material having a second coefficient of thermal expansion in the radial direction. The first coefficient of thermal expansion is lower than the second coefficient of thermal expansion.Type: GrantFiled: July 21, 2022Date of Patent: October 17, 2023Assignee: Rolls-Royce PLCInventors: Fiona Halliday, Mark Spruce
-
Patent number: 11788477Abstract: An aircraft has first and second fuel sources containing fuels with different characteristics, and one or more gas turbine engines powered by the fuels and each having a staged combustion system having pilot and main fuel injectors and being operable in pilot-only and pilot-and-main ranges of operation. The gas turbine engines each have a fuel delivery regulator arranged to control fuel delivery to the pilot and main fuel injectors. The method includes: obtaining a proposed mission description; obtaining nvPM impact parameters for the gas turbine engines, the impact parameters being associated with each operating condition of the proposed mission; calculating an optimised set of one or more fuel characteristics for each flight condition of the proposed flight defined in the flight description based on the nvPM impact parameters; and determining a fuel allocation based on the optimised set of one or more fuel characteristics.Type: GrantFiled: June 29, 2022Date of Patent: October 17, 2023Assignee: ROLLS-ROYCE plcInventors: Peter Swann, Christopher P Madden, Craig W Bemment
-
Patent number: 11788492Abstract: A reheat assembly for a gas turbine engine includes; a jetpipe casing defining a reheat core section configured to duct a core flow of air and a reheat bypass section configured to duct a bypass flow of air. The reheat bypass section is disposed radially outward of the reheat core section, and the reheat core section and the reheat bypass section are at least partially separated by a support duct. An integrated flameholder is mounted to the jetpipe casing, and a fuel pipe is configured to convey fuel to the integrated flameholder. The integrated flameholder includes a flameholder body extending radially inward from the jetpipe casing through the reheat bypass section and into the reheat core section to promote a wake-stabilised region downstream of the body; and an integrated atomiser configured to atomise fuel provided to the integrated flameholder and to discharge the atomised fuel into the wake stabilised region.Type: GrantFiled: January 4, 2023Date of Patent: October 17, 2023Assignee: ROLLS-ROYCE plcInventors: Ashley Powell, Andrew Wilkinson, Eduardo Romero
-
Publication number: 20230323823Abstract: An aircraft has first and second fuel sources containing fuels with different characteristics, and one or more gas turbine engines powered by the fuels and each having a staged combustion system having pilot and main fuel injectors and being operable in pilot-only and pilot-and-main ranges of operation. The gas turbine engines each have a fuel delivery regulator arranged to control fuel delivery to the pilot and main fuel injectors. The method includes: obtaining a proposed mission description; obtaining nvPM impact parameters for the gas turbine engines, the impact parameters being associated with each operating condition of the proposed mission; calculating an optimised set of one or more fuel characteristics for each flight condition of the proposed flight defined in the flight description based on the nvPM impact parameters; and determining a fuel allocation based on the optimised set of one or more fuel characteristics.Type: ApplicationFiled: June 29, 2022Publication date: October 12, 2023Applicant: ROLLS-ROYCE plcInventors: Peter SWANN, Christopher P MADDEN, Craig W BEMMENT
-
Publication number: 20230324319Abstract: A method of checking refuelling of an aircraft comprising a gas turbine engine and a fuel tank arranged to provide fuel to the gas turbine engine comprises: receiving an input of calorific value data for fuel provided to the aircraft on refuelling; independently determining at least one of: (i) the calorific value of fuel supplied to the gas turbine engine in use; and (ii) the calorific value of the fuel provided to the aircraft on refuelling; and providing an alert if the determined calorific value is inconsistent with the calorific value data input receivedType: ApplicationFiled: June 29, 2022Publication date: October 12, 2023Applicant: ROLLS-ROYCE PLCInventors: Craig W. BEMMENT, Paul W. FERRA, Alastair G. HOBDAY, Benjamin J. KEELER, Kevin R. MCNALLY, Andrea MINELLI, Martin K. YATES
-
Publication number: 20230322395Abstract: A power system for an aircraft includes one or more gas turbine engines arranged to burn a fuel so as to provide power to the aircraft; a plurality of fuel tanks each arranged to contain a fuel to be used to provide power to the aircraft; and a fuel manager. At least two of the fuel tanks contain different fuels, which have different proportions of a sustainable aviation fuel. The fuel manager is arranged to store information on the fuel contained in each fuel tank; and to control fuel supply so as to select a specific fuel accordingly to power at least the majority of operations on the ground. The fuel manager may additionally identify which tank contains the fuel with the highest proportion of a sustainable aviation fuel; and that fuel may be used to power at least the majority of operations on the ground.Type: ApplicationFiled: June 13, 2023Publication date: October 12, 2023Applicant: ROLLS-ROYCE plcInventors: Peter SWANN, Craig W BEMMENT, Alastair G HOBDAY, Benjamin J KEELER, Christopher P MADDEN
-
Publication number: 20230323810Abstract: There is provided a gas turbine engine comprising a blower system for supplying pressurised air to an airframe via an airframe port. The blower system comprises a compressor configured to receive air from a bypass duct or a core of the gas turbine engine and to discharge compressed air into a delivery line extending from the compressor to the airframe port. The blower system also comprises a heat exchanger configured to transfer heat from the compressed air to a coolant and a valve arrangement configured to switch between operation of the blower system in a baseline mode and a cooling mode, the valve arrangement being configured to: selectively divert the compressed air within the delivery line to the heat exchanger for operation in the cooling mode; and/or selectively provide the coolant to the heat exchanger for operation in the cooling mode.Type: ApplicationFiled: March 15, 2023Publication date: October 12, 2023Applicant: ROLLS-ROYCE plcInventors: Christopher A. MURRAY, Nicholas HOWARTH, Richard G. STRETTON
-
Publication number: 20230323821Abstract: A method of refuelling an aircraft comprising a gas turbine engine and a fuel tank arranged to provide fuel to the gas turbine engine comprises obtaining an amount of energy required for an intended flight profile; obtaining a calorific value of fuel available to the aircraft for refuelling; calculating the amount of the available fuel needed to provide the required energy; and refuelling the aircraft with the calculated amount of the available fuel. The calculating the amount of the available fuel needed to provide the required energy may comprise obtaining an energy content of fuel already in the fuel tank and subtracting that from the determined amount of energy required for the intended flight profile.Type: ApplicationFiled: March 23, 2023Publication date: October 12, 2023Applicant: ROLLS-ROYCE PLCInventors: Craig W BEMMENT, Benjamin J KEELER, Paul W FERRA, Alastair G HOBDAY, Kevin R MCNALLY, Andrea MINELLI, Martin K. YATES
-
Publication number: 20230323822Abstract: The present application discloses a method of determining one or more fuel characteristics of an aviation fuel suitable for powering a gas turbine engine of an aircraft, the gas turbine engine having a combustor supplied with fuel from a fuel system, the method comprising: determining a mass of the fuel being supplied to the combustor; determining a corresponding volume of the fuel being supplied to the combustor; and determining one or more fuel characteristics based on the determined mass and volume. Also disclosed is a fuel characteristic determination system, a method of operating an aircraft, and an aircraft.Type: ApplicationFiled: March 23, 2023Publication date: October 12, 2023Applicant: ROLLS-ROYCE PLCInventors: Craig W BEMMENT, Benjamin J KEELER, Paul W FERRA, Alastair G HOBDAY, Kevin R MCNALLY, Andrea MINELLI, Martin K YATES
-
Publication number: 20230323824Abstract: A aircraft gas turbine engine and operation method, the engine including: a staged combustion system having pilot and main fuel injectors, and operates in a pilot-only range wherein fuel delivers to pilot fuel injectors, and a pilot-and-main operation range wherein fuel is delivered to at least the main fuel injectors. The engine further includes a fuel delivery regulator to pilot and main fuel injectors, which receives fuel from a first and second source containing fuels each with different characteristics. The staged combustion system switches between pilot-only and pilot-and-main range operation when in steady cruise mode, the mode defining a boundary between first and second engine cruise operation range. The fuel delivery regulator delivers fuel to pilot fuel injectors during at least part of the first engine cruise operation with different fuel characteristics from fuel delivered to one or both pilot and main fuel injectors the second engine cruise operation range.Type: ApplicationFiled: January 18, 2023Publication date: October 12, 2023Applicant: ROLLS-ROYCE PLCInventors: Peter SWANN, Christopher P MADDEN, Craig W BEMMENT
-
Publication number: 20230323820Abstract: A gas turbine engine for an aircraft, including: staged combustion system having pilot fuel injectors and main fuel injectors, staged combustion system being operable in pilot-only range of operation and pilot-and-main range of operation; and fuel delivery regulator arranged to control delivery of fuel to pilot and main fuel injectors. Fuel delivery regulator arranged to receive fuel from a first fuel source containing a first fuel having a first fuel characteristic and a second fuel source containing a second fuel having a different second fuel characteristic. The fuel delivery regulator is arranged to deliver fuel to the pilot fuel injectors during at least part of the pilot-only range of operation having a different fuel characteristic from fuel delivered to one or both of the pilot and main fuel injectors during at least part of the pilot-and-main range of operation. A method of operating a gas turbine engine is also disclosed.Type: ApplicationFiled: June 29, 2022Publication date: October 12, 2023Applicant: ROLLS-ROYCE plcInventors: Peter SWANN, Craig W BEMMENT, Christopher P MADDEN
-
Patent number: 11781487Abstract: A gas turbine engine for an aircraft includes an engine core with a turbine, a compressor, and a core shaft connecting the turbine and compressor; a fan upstream of the engine core including a plurality of fan blades; and a gearbox that receives an input from a gearbox input shaft portion of the core shaft and outputs drive to a fan shaft so as to drive the fan at a lower rotational speed than the core shaft, the gearbox being an epicyclic gearbox including a sun gear, a plurality of planet gears, a ring gear, and a planet carrier arranged to have the plurality of planet gears mounted thereon, and wherein the sun gear receives input from the core shaft. At cruise conditions the torque on the core shaft is greater than 10,000 Nm and a ratio of core shaft stiffness to core shaft torque is within a specified range.Type: GrantFiled: November 30, 2020Date of Patent: October 10, 2023Assignee: ROLLS-ROYCE plcInventor: Mark Spruce
-
Patent number: 11781491Abstract: A gas turbine engine has a compression system blade ratio defined as the ratio of the height of a fan blade to the height of the most downstream compressor blade in the range of from 45 to 95. This results in an optimum balance between installation benefits, operability, maintenance requirements and engine efficiency when the gas turbine engine is installed on an aircraft.Type: GrantFiled: November 15, 2022Date of Patent: October 10, 2023Assignee: ROLLS-ROYCE plcInventors: Nicholas Howarth, Gareth M Armstrong
-
Patent number: 11780597Abstract: A propulsion system for an aircraft comprises a gas turbine engine; a plurality of fuel tanks arranged to contain different fuels to be used to power the gas turbine engine, wherein the fuels have different calorific values; and a fuel manager. The fuel manager is arranged to store information on the fuel contained in each fuel tank and to control fuel input to the gas turbine engine in operation by selection of a specific fuel or fuel combination from one or more of the plurality of fuel tanks based on thrust demand of the gas turbine engine such that a fuel with a lower calorific value is supplied to the gas turbine engine at lower thrust demand.Type: GrantFiled: June 29, 2022Date of Patent: October 10, 2023Assignee: ROLLS-ROYCE plcInventors: Peter Swann, Craig W Bemment, Alastair G Hobday, Benjamin J Keeler, Christopher P Madden
-
Patent number: 11781488Abstract: Gearboxes for aircraft gas turbine engines, in particular arrangements for journal bearings such gearboxes, and related methods of operating such gearboxes and gas turbine engines, including a gearbox for an aircraft gas turbine engine, the gearbox including: a sun gear; a plurality of planet gears surrounding and engaged with the sun gear; and a ring gear surrounding and engaged with the plurality of planet gears, each of the plurality of planet gears being rotatably mounted around a pin of a planet gear carrier with a journal bearing having an internal sliding surface on the planet gear and an external sliding surface on the pin.Type: GrantFiled: April 6, 2021Date of Patent: October 10, 2023Assignee: ROLLS-ROYCE plcInventor: Mark Spruce
-
Patent number: 11781672Abstract: A valve assembly includes a fluid flow passage, a valve seat, and an actuator assembly. The actuator assembly includes an actuator body stationary relative to the valve seat and a valve member moveable relative to the valve seat between a first position in which the valve member engages the valve seat, and a second position in which the valve member is remote from the valve seat. The valve member includes at least one orifice extending therethrough. The actuator assembly further includes a bellows attached to the valve member and to the actuator body. An interior surface of the bellows, the actuator body, and the valve member define a control chamber therebetween. An exterior surface of the bellows and the valve member define an outer volume therebetween such that the outer volume is around the control chamber. The at least one orifice fluidly communicates the control chamber with the outer volume.Type: GrantFiled: November 23, 2022Date of Patent: October 10, 2023Assignee: ROLLS-ROYCE plcInventor: Christopher A. Murray
-
Publication number: 20230313743Abstract: The present application provides a method of determining one or more fuel characteristics of an aviation fuel suitable for powering a gas turbine engine of an aircraft. The method includes: passing UV-visual spectrum light through the fuel; measuring a transmittance parameter indicating the transmittance of light through the fuel; determining one or more fuel characteristics of the fuel based on the transmittance parameter; and communicating the one or more fuel characteristic to a control module of the gas turbine engine or the aircraft. Also disclosed is a fuel characteristic determination system, a method of operating an aircraft, and an aircraft.Type: ApplicationFiled: June 5, 2023Publication date: October 5, 2023Applicant: ROLLS-ROYCE plcInventors: Peter SWANN, David M. BEAVEN, Craig W. BEMMENT, Alastair G. HOBDAY, Benjamin J. KEELER, Christopher P. MADDEN, Martin K. YATES
-
Publication number: 20230314281Abstract: Described herein is a method of monitoring a condition of a component of a gas turbine engine, comprising: obtaining, with a non-contact monitoring sensor, monitoring data, wherein a portion of the monitoring data relates to the condition of the component of the gas turbine engine; obtaining, using a position sensor, positional data relating to the component's position; communicating the monitoring data and the positional data to a processing module, and analysing, using the processing module, the monitoring data and positional data to determine the portion of the monitoring data which relates to the component and determine a condition of the component. Also described herein is a system for monitoring and a gas turbine engine comprising the system.Type: ApplicationFiled: March 15, 2023Publication date: October 5, 2023Applicant: ROLLS-ROYCE plcInventors: Derek S. WALL, Peter F. DOUGLAS
-
Publication number: 20230313701Abstract: A method of determining one or more fuel characteristic of an aviation fuel suitable for powering a gas turbine engine of an aircraft is disclosed. The method includes: determining, during use of the gas turbine engine, one or more contrail parameters related to contrail formation by the gas turbine engine. The determining of the one or more contrail parameters includes performing a sensor measurement on a region behind the gas turbine engine in which a contrail is or can be formed. The method also includes determining one or more fuel characteristics of the fuel based on the one or more contrail parameters. A fuel characteristic determination system, a method of operating an aircraft and an aircraft are also disclosed.Type: ApplicationFiled: June 2, 2023Publication date: October 5, 2023Applicant: ROLLS-ROYCE plcInventors: Peter SWANN, David M. BEAVEN, Craig W. BEMMENT, Alastair G. HOBDAY, Benjamin J. KEELER, Christopher P. MADDEN, Martin K. YATES
-
Publication number: 20230314249Abstract: A system and a method of testing a specimen. The system includes an endcap, a plurality of bars, a plurality of strain gauges, and a gas gun. The endcap includes a first surface and a second surface opposite to the first surface. The first surface is curved. Each bar is disposed in contact with the second surface of the endcap and extends along a longitudinal axis. Each strain gauge is disposed on a surface of a corresponding bar from the plurality of bars. At least one strain gauge is disposed on the surface of each bar. The gas gun is configured to fire a specimen towards the first surface of the endcap such that the specimen impacts the first surface at an oblique angle relative to the longitudinal axis.Type: ApplicationFiled: March 15, 2023Publication date: October 5, 2023Applicant: ROLLS-ROYCE plcInventors: Zhen ZHOU, Duncan A. MACDOUGALL, Julian M. REED