Abstract: A tissue contacting material comprising a plurality of regions comprising an outer region serving as a protective barrier, one or more inner regions, and a tissue contacting region. The plurality of regions each comprise one or more of a plurality of polymers selected from the group consisting of a first polymer comprising a crosslinked hydrophilic polymer and a second crosslinked polymeric matrix, formed of a crosslinkable polymer adapted to incorporate the first polymer without substantially reacting or crosslinking with the first polymer. The first and/or second polymers provide the respective regions with one or more properties including swellability in the presence of water, active agent content, permeability to the diffusion of active agent from or through the layer, moisture vapor permeability, and adhesion to tissue.
Type:
Application
Filed:
August 4, 2009
Publication date:
February 10, 2011
Applicant:
RST Implanted Cell Technology
Inventors:
Stanley Dale Harpstead, Loren L. Barber, JR.
Abstract: A device and method of using the device are provided for implanting cell cultures in a host. The device is formed of a deformable body, a microporous membrane and a sealable port. The shape of the body which is preferably rounded can be altered by applying stress or pressure, The body comprises a continuous wall constructed of a mesh material, and the membrane lines a surface of the body. The wall and membrane define an enclosed three-dimensional cavity for containing a cell culture. Openings of the membrane allow for passage of therapeutic substances produced by the cells and nutrients or biomolecules produced by host. The sealable port is configured for adding a cell culture to the cavity, and is formed of a material that is capable of resealing after being punctured with a needle. Because the device is deformable, it can be compressed and placed in an implantation site where it expands to conform to contours of tissue surrounding the site.