Patents Assigned to S.T. Technologies, Inc.
  • Patent number: 9487854
    Abstract: This invention relates to thermally sprayed coatings having an amorphous-nanocrystalline-microcrystalline composition structure, said thermally sprayed coating comprising from about 1 to about 95 volume percent of an amorphous phase, from about 1 to about 80 volume percent of a nanocrystalline phase, and from about 1 to about 90 volume percent of a microcrystalline phase, and wherein said amorphous phase, nanocrystalline phase and microcrystalline phase comprise about 100 volume percent of said thermally sprayed coating. This invention also relates to methods for producing the coatings, thermal spray processes for producing the coatings, and articles coated with the coatings. The thermally sprayed coatings of this invention provide enhanced wear and corrosion resistance for articles used in severe environments (e.g., landing gears, airframes, ball valves, gate valves (gates and seats), pot rolls, and work rolls for paper processing).
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: November 8, 2016
    Assignee: PRAXAIR S.T. TECHNOLOGY, INC.
    Inventors: Tetyana P. Shmyreva, James Knapp, Ardy Simon Kleyman
  • Patent number: 9394448
    Abstract: A novel chromate-free multi-layer coating system composed of a lithium-doped potassium silicate binder based basecoat composition that is sealed with an aluminum phosphate-based top coat composition is described. The multi-layer coating system exhibits superior corrosion and heat oxidation resistance which can replace traditional chromate-containing coating systems.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: July 19, 2016
    Assignee: PRAXAIR S.T. TECHNOLOGY, INC.
    Inventors: Irina Belov, Daryl G. Copeland
  • Patent number: 9371253
    Abstract: This invention relates to high purity yttria or ytterbia stabilized zirconia powders comprising from about 0 to about 0.15 weight percent impurity oxides, from about 0 to about 2 weight percent hafnium oxide (hafnia), from about 6 to about 25 weight percent yttrium oxide (yttria) or from about 10 to about 36 weight percent ytterbium oxide (ytterbia), and the balance zirconium oxide (zirconia). Thermal barrier coatings for protecting a component such as blades, vanes and seal surfaces of gas turbine engines, made from the high purity yttria or ytterbia stabilized zirconia powders, have a density greater than 88% of the theoretical density with a plurality of verticalzA macrocracks homogeneously dispersed throughout the coating to improve its thermal fatigue resistance.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: June 21, 2016
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: Thomas Alan Taylor, Danny Lee Appleby, Albert Feuerstein, Ann Bolcavage, Neil Hitchman, James Munroe
  • Patent number: 9322101
    Abstract: A composition based on a certain chromium-free silicate-based binder is described. The one-part slurry composition is an aqueous solution of lithium-doped potassium silicate in combination with an aluminum or aluminum alloy powder. The one-part slurry composition produces a corresponding coating exhibiting improved performance at a reduced coating thickness.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: April 26, 2016
    Assignee: PRAXAIR S.T. TECHNOLOGY, INC.
    Inventors: Irina Belov, Daryl G. Copeland
  • Patent number: 9291264
    Abstract: This invention relates to thermal spray coatings, powders useful in deposition of the thermal spray coatings, methods of producing the powders, and uses of the thermal spray coatings, for example, coating of piston rings and cylinder liners of internal combustion engines. The coatings of this invention are applied by thermal spray deposition of a powder. The powder contains bimetallic carbides of chromium and molybdenum dispersed in a matrix metal. The matrix metal contains nickel/chromium/molybdenum.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: March 22, 2016
    Assignee: PRAXAIR S. T. TECHNOLOGY, INC.
    Inventors: William John Crim Jarosinski, Vladimir Belov
  • Patent number: 9222163
    Abstract: A layer system and a method for producing a component having such a layer system are provided. The layer system includes a substrate a substrate, at least one MCrX layer on the substrate, and a chromium-rich layer on or in the at least one MCrX layer. X includes at least one element selected from the group consisting of yttrium (Y), silicon (Si), aluminum (Al) and boron (B). M includes at least one element selected from the group consisting of nickel (Ni) and cobalt (Co).
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: December 29, 2015
    Assignees: SIEMENS AKTIENGESELLSCHAFT, PRAXAIR S.T. TECHNOLOGIES INC.
    Inventors: Paul Box, Hugh Evans, Thomas Kircher, Thomas Lewis, Bruce McMordie, John Nicholls, Paul Padley, Nigel Simms, Jonathan Venezia, Paul Mathew Walker, Adrian Weatherill, Mick Whitehurst
  • Patent number: 9096763
    Abstract: An improved slurry formulation for the production of a thermal and environmental barrier coatings are provided which can withstand high temperature applications. The slurry includes a combination of a coarse ceramic powder fraction having close porosity particles and a fine ceramic powder fraction. The combination of the two powders produces a bimodal particle size distribution having a controlled amount of closed porosity that imparts desirable properties to the coating produced. The finer solid particles are interdispersed within an aqueous binder to produce a ceramic matrix with sufficient mechanical strength. The closed porosity containing coarse particles are embedded within the resultant ceramic matrix and do not disintegrate under high temperature conditions to impart a temperature resistant, non-collapsing closed porosity to the coating which can also act as an environmental barrier.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: August 4, 2015
    Assignee: PRAXAIR S.T. TECHNOLOGY, INC.
    Inventors: Vladimir V. Belov, Irina Belov
  • Patent number: 9085490
    Abstract: This invention relates to thermally sprayed coatings of a high purity yttria or ytterbia stabilized zirconia powder, said high purity yttria or ytterbia stabilized zirconia powder comprising from about 0 to about 0.15 weight percent impurity oxides, from about 0 to about 2 weight percent hafnium oxide (hafnia), from about 6 to about 25 weight percent yttrium oxide (yttria) or from about 10 to about 36 weight percent ytterbium oxide (ytterbia), and the balance zirconium oxide (zirconia). Thermal barrier coatings for protecting a component such as blades, vanes and seal surfaces of gas turbine engines, made from the high purity yttria or ytterbia stabilized zirconia powders, have a density greater than 88% of the theoretical density with a plurality of vertical macrocracks homogeneously dispersed throughout the coating to improve its thermal fatigue resistance.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: July 21, 2015
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: Thomas Alan Taylor, Danny Lee Appleby, Albert Feuerstein, Ann Bolcavage, Neil Hitchman
  • Patent number: 9080236
    Abstract: The invention relates to a tube target (50) for sputtering, with a target (46) disposed on a cylindrical carrier tube. This target (46) is divided into several segments. The target (46) includes at least one groove (51-54) extending obliquely with respect to its rotational axis.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: July 14, 2015
    Assignee: PRAXAIR S.T. TECHNOLOGY, INC.
    Inventor: Dieter Wurczinger
  • Patent number: 9017464
    Abstract: A composition based on a certain chromium-free silicate-based binder is described. The one-part slurry composition is an aqueous solution of lithium-doped potassium silicate in combination with an aluminum or aluminum alloy powder. The one-part slurry composition produces a corresponding coating exhibiting improved performance at a reduced coating thickness.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: April 28, 2015
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: Irina Belov, Daryl G. Copeland
  • Patent number: 8906130
    Abstract: This invention relates to thermal spray coatings, powders useful in deposition of the thermal spray coatings, methods of producing the powders, and uses of the thermal spray coatings, for example, coating of piston rings and cylinder liners of internal combustion engines. The coatings of this invention are applied by thermal spray deposition of a powder. The powder contains bimetallic carbides of chromium and molybdenum dispersed in a matrix metal. The matrix metal contains nickel/chromium/molybdenum.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: December 9, 2014
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: William John Crim Jarosinski, Vladimir Belov
  • Publication number: 20140334939
    Abstract: This invention relates to high purity yttria or ytterbia stabilized zirconia powders comprising from about 0 to about 0.15 weight percent impurity oxides, from about 0 to about 2 weight percent hafnium oxide (hafnia), from about 6 to about 25 weight percent yttrium oxide (yttria) or from about 10 to about 36 weight percent ytterbium oxide (ytterbia), and the balance zirconium oxide (zirconia). Thermal barrier coatings for protecting a component such as blades, vanes and seal surfaces of gas turbine engines, made from the high purity yttria or ytterbia stabilized zirconia powders, have a density greater than 88% of the theoretical density with a plurality of verticalzA macrocracks homogeneously dispersed throughout the coating to improve its thermal fatigue resistance.
    Type: Application
    Filed: November 1, 2013
    Publication date: November 13, 2014
    Applicant: PRAXAIR S.T. TECHNOLOGY, INC.
    Inventors: Thomas Alan TAYLOR, Danny Lee APPLEBY, Albert FEUERSTEIN, Ann BOLCAVAGE, Neil HITCHMAN, James MUNROE
  • Patent number: 8728967
    Abstract: This invention relates to high purity yttria or ytterbia stabilized zirconia powders comprising from about 0 to about 0.15 weight percent impurity oxides, from about 0 to about 2 weight percent hafnium oxide (hafnia), from about 6 to about 25 weight percent yttrium oxide (yttria) or from about 10 to about 36 weight percent ytterbium oxide (ytterbia), and the balance zirconium oxide (zirconia). Thermal barrier coatings for protecting a component such as blades, vanes and seal surfaces of gas turbine engines, made from the high purity yttria or ytterbia stabilized zirconia powders, have a density greater than 88% of the theoretical density with a plurality of vertical macrocracks homogeneously dispersed throughout the coating to improve its thermal fatigue resistance.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: May 20, 2014
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: Thomas Alan Taylor, Danny Lee Appleby, Albert Feuerstein, Ann Bolcavage, Neil Hitchman, James Munroe
  • Patent number: 8697250
    Abstract: A composition based on a novel MCrAlY formulation is provided for the production of protective coatings. The specific combination of the constituents of the MCrAlY formulation advantageously allows significantly high loadings of ceramic (metal oxide) while still retaining the ability to selectively oxidize aluminum to form alumina scale, a property previously not attainable with conventional MCrAlY materials when loaded with ceramics at levels of 15-45 weight percent. The alumina scale in combination with the modified MCrAlY formulation act as a barrier to specific detrimental oxide formations. The compositions of the present invention can act as protective coatings for a wide array of applications.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: April 15, 2014
    Assignee: Praxair S.T. Technology, Inc.
    Inventor: William Jarosinski
  • Patent number: 8551201
    Abstract: Polyurethane composition based on a certain polyether and polyester prepolymer reaction mixture, wherein the composition is utilized in manufacturing chemical mechanical polishing/planarizing (CMP) pads. The CMP pads have low rebound and can dissipate irregular energy as well as stabilize polishing to yield improved uniformity and less dishing of the substrate.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: October 8, 2013
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: Yong Zhang, David Huang, Lu Sun
  • Patent number: 8524375
    Abstract: This invention relates to thermally spray coated work rolls for use in metal or metal alloy, e.g., aluminum alloy, sheet manufacture comprising a cylindrical-like structure having an outer peripheral surface and a thermally sprayed coating on the outer peripheral surface of said cylindrical-like structure, said thermally sprayed coating comprising from about 65 to about 95 weight percent of one or more Group VI metal carbides, and from about 5 to about 35 weight percent of one or more transition metals selected from chromium, manganese, iron, cobalt and nickel. This invention also relates to a process for preparing the work rolls for use in metal or metal alloy, e.g., aluminum alloy, sheet manufacture, a method for manufacturing metal or metal alloy, e.g., aluminum alloy, sheet using the thermally spray coated work rolls, and a thermal spray powder for coating the outer peripheral surface of the work rolls for use in metal or metal alloy, e.g., aluminum alloy, sheet manufacture.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: September 3, 2013
    Assignee: Praxair S.T. Technology, Inc.
    Inventor: William John Crim Jarosinski
  • Patent number: 8507105
    Abstract: This invention relates to rolls for use in or in contact with molten metal comprising a roll drum having an outer peripheral surface and a thermally sprayed coating on the outer peripheral surface of said roll drum, said thermally sprayed coating comprising from about 66 to about 88 weight percent of tungsten, from about 2.5 to about 6 weight percent of carbon, from about 6 to about 20 weight percent of cobalt, and from about 2 to about 9 weight percent of chromium; a process for preparing the rolls; a method for forming a metal layer on a metal sheet utilizing the rolls, e.g., galvanization; and a thermal spray powder for coating the outer peripheral surface of the rolls.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: August 13, 2013
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: William Jarosinski, John Quets, Daming Wang, Vladimir Belov, Ardy Simon Kleyman
  • Patent number: 8465602
    Abstract: This invention relates to thermally sprayed coatings having an amorphous-nanocrystalline-microcrystalline composition structure, said thermally sprayed coating comprising from about 1 to about 95 volume percent of an amorphous phase, from about 1 to about 80 volume percent of a nanocrystalline phase, and from about 1 to about 90 volume percent of a microcrystalline phase, and wherein said amorphous phase, nanocrystalline phase and microcrystalline phase comprise about 100 volume percent of said thermally sprayed coating. This invention also relates to methods for producing the coatings, thermal spray processes for producing the coatings, and articles coated with the coatings. The thermally sprayed coatings of this invention provide enhanced wear and corrosion resistance for articles used in severe environments (e.g., landing gears, airframes, ball valves, gate valves (gates and seats), pot rolls, and work rolls for paper processing).
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: June 18, 2013
    Assignee: Praxair S. T. Technology, Inc.
    Inventors: Tetyana P. Shmyreva, James Knapp, Ardy Simon Kleyman
  • Patent number: 8308916
    Abstract: This invention relates to a fixture for use in a physical vapor deposition coating operation which comprises a support structure 14 comprising a circular base member 10, a circular top member 11 opposite the circular base member 10, and a plurality of structural members 12 joining said top member 11 to said base member 10; a plurality of panel members 13 aligned in a vertical direction around the outer periphery of said support structure 14 forming a cylinder structure; said panel members 13 including a plurality of apertures for holding workpieces 19 and 35 to which a coating is to be applied; and said apertures positioned on said panel members 13 so that said workpieces 19 and 35 are aligned in a staggered vertical direction. This invention also relates to a method for simultaneously coating a plurality of workpieces 19 and 35, such as gas turbine compressor blades and vanes, with erosion resistant coatings using the fixture of this invention.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: November 13, 2012
    Assignee: Praxair S. T. Technology, Inc.
    Inventors: David Sharp, Albert Feuerstein, Scott Cain
  • Patent number: 8283048
    Abstract: A thermally sprayed coating, coating system and coated article are disclosed. The disclosed embodiments of the thermally sprayed coating, coating system and coated article use a customized ceramic powder comprising ceramic powder particles having an average particle size of about 25 to about 75 microns. In particular, the ceramic powder particles contain from about 70 to about 95 percent by weight of a zirconia-based component, with the balance being an (alumina+silica)-based component and wherein said ceramic powder particles comprise micronized sub-particles of the zirconia-based component and the (alumina+silica)-based component.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: October 9, 2012
    Assignee: Praxair S. T. Technology, Inc.
    Inventor: Thomas Alan Taylor