Abstract: A system and method for securing a roof truss to a load bearing wall is disclosed. A strap is attached to a roof truss at one end and extended to the top of a load-bearing wall. A buckle is placed over the strap to secure the strap between the buckle and the roof truss, and also the buckle and the load-bearing wall. The end of the strap is extended along the top of buckle toward the roof truss and a top plate secures the strap between the buckle and the top plate. Screws are placed through holes in the top plate and corresponding holes in the buckle to attach the system to the top of the load-bearing wall. The system and method of the invention provides both horizontal (lateral) resistance and uplift resistance, thus resisting horizontal (lateral) forces while at the same time providing uplift resistance.
Abstract: A system and method for securing a roof truss to a load bearing wall is disclosed. A strap is attached to a roof truss at one end and extended to the top of a load-bearing wall. A buckle is placed over the strap to secure the strap between the buckle and the roof truss, and also the buckle and the load-bearing wall. The end of the strap is extended along the top of buckle toward the roof truss and a top plate secures the strap between the buckle and the top plate. Screws are placed through holes in the top plate and corresponding holes in the buckle to attach the system to the top of the load-bearing wall. The system and method of the invention provides both horizontal (lateral) resistance and uplift resistance, thus resisting horizontal (lateral) forces while at the same time providing uplift resistance.
Abstract: A system and method for securing a roof truss to a load bearing wall is disclosed. A strap is attached to a roof truss at one end and extended to the top of a load-bearing wall. A buckle is placed over the strap to pinch the strap between the vertical and horizontal arms of the buckle. The end of the strap is wrapped back toward the vertical side of the roof truss and a flat plate is placed to pinch the free end of the strap between the buckle and the flat plate. Screws are placed through holes in the flat plate and corresponding holes in the buckle to attach the system to the top of the load-bearing wall. The system and method of the invention provides both horizontal (lateral) resistance and uplift resistance, thus resisting horizontal (lateral) forces while at the same time providing uplift resistance.