Abstract: Control instructions are transmitted to receivers by modulating light sources to generate light beams that are modulated with digital data streams for inducing control instructions in the light beams. Each light beam is applied to a pixel shaper element of a pixel shaper assembly to produce a light pixel, each light pixel carrying the control instructions of the light beam, each light pixel having a perimeter defined by the pixel shaper element. The pixel shaper assembly combines the light pixels into an image without significant overlap or voids between the light pixels emitted by the pixel shaper assembly. The light pixels are directed toward a projector lens for transmission toward the receivers. In a receiver, an optical receiver detects a light pixel. A controller decodes the control instructions received in the detected light pixel and uses the control instructions to control a function of the receiver.
Abstract: A light shaping assembly comprises a printed circuit board (PCB), a two-dimensional (2D) array formed of a plurality of rows, each row comprising a plurality of light sources mounted on the PCB, and a Fresnel lens. The Fresnel lens redirects a light beam emitted by each light source at an angle that increases as a function of a distance between each light source and a selected point on the PCB, so that the light beams emitted by the light sources are collectively directed toward a common target.
Abstract: A device comprises an enclosure having a rear opening adapted to receive a light beam from a light source, a front opening adapted to emit a modified light beam, and internal walls extending between the rear opening and the front opening. The light beam is modified according to a perimeter of the front opening. A light shaping assembly comprises a two-dimensional array formed of a plurality of such devices, each one of the plurality of devices being adapted to receive a light beam from a corresponding light source.
Abstract: A combination comprises at least one lens and at least one prism. The at least one lens and the at least one prism are in an optical path of a corresponding at least one light source. The combination is configured to direct light radiating from the at least one light source toward a projector lens.
Abstract: A light shaping assembly comprises a printed circuit board (PCB) and a two-dimensional (2D) array formed of a plurality of rows, each row comprising a plurality of light sources mounted on the PCB, each light source comprising a pair of supporting pins for mounting the light source on the PCB. The supporting pins of each light source are bent at an angle that is increasing as a function of a distance between each light source and a selected point on the PCB so that light beams emitted by the light sources are collectively directed toward a common target.
Abstract: Radio frequency-enabled lighting-fixture management systems, apparatus, and methods are described. One implementation includes a wireless communication component and a controller that is integrated into the radio frequency-enabled lighting-fixture management unit. The controller is configured to obtain operational values of a luminaire driver or a luminaire. The controller is further configured to provide the obtained operational values to the wireless communication component for transmission.
Type:
Application
Filed:
September 27, 2013
Publication date:
January 30, 2014
Applicant:
LSI SACO TECHNOLOGIES, INC.
Inventors:
Mark Van Wagoner, Tim Frodsham, John D. Boyer, Jesse Wade Fannon, Kevin Allan Kelly