Abstract: An abrasive article which is made from a liquid resin composition containing no formaldehyde, which replaces the resol or urea-formaldehyde resin used as an adhesive in coated abrasives and the resol used as an impregnation resin in bonded abrasives. The liquid resin composition comprises a product that results from the oxidative cleavage of an unsaturated plant or animal oil, chosen from aldehydes, peroxides and mixtures of these compounds. The liquid resin composition can be used for the manufacture of coated and bonded abrasive articles.
Type:
Application
Filed:
May 6, 2009
Publication date:
May 19, 2011
Applicants:
SAINT-GOBAIN ABRASIVES, INC., SAINT-GOBAIN ABRASIFS TECH. ET SERVICES, S.A.S.
Abstract: An abrasive article with improved grain retention and performance and method of making are disclosed. The abrasive article with improved grain retention results in an article with improved performance and longer article life.
Abstract: A bonded abrasive article is provided which includes abrasive grains made of cubic boron nitride within a bond matrix including a silicate. The bonded abrasive further includes a reaction product at the interface between the abrasive grains and bond matrix comprising a transition metal nitride.
Abstract: An abrasive article having an abrasive body including abrasive grains contained within a bond material, wherein the abrasive grains comprise microcrystalline alumina, and wherein the bond material includes less than about 1.0 mol % phosphorous oxide (P2O5), and a ratio measured in mol % between a total content of sodium oxide (Na2O) and a total content of potassium oxide (K2O) defined by [K2O/Na2O] having a value greater than about 0.5.
Abstract: Mating systems and methods for joining coated abrasives. The mating system comprises mating portions positioned at coated abrasive end portions. Complimentary mating portions may be used to join coated abrasives without glue or mechanical attachment. The mating system of the present invention may be used to join a coated abrasive to itself, or to join multiple coated abrasives to each other.
Abstract: An abrasive tool has a body including an abrasive portion having abrasive grains contained within a matrix material, and a first reinforcing member contained within the abrasive portion, wherein the body comprises a porosity variation difference through at least half of a thickness of the body of not greater than 250% from a mean porosity of the body.
Abstract: An abrasive article includes an elongated body, a bonding layer including a metal overlying a surface of the elongated body, and a coating layer including a polymer material overlying the boding layer. The abrasive article further includes abrasive grains contained within the bonding layer and coating layer, and wherein the bonding layer comprises an average thickness (tbl) at least about 40% of the average grit size of the abrasive grains.
Abstract: In one aspect, a process for roll grinding employs a grinding wheel that is porous and permeable. In another aspect, a process for grinding mill rolls includes dressing the grinding wheel as the wheel traverses the surface of a mill roll. Other aspects relate to a system, e.g., a mill roll grinding machine, or parts thereof, in which a dressing tool contacts the wheel as the wheel grinds the surface of the mill roll. In specific examples, the wheel and a rotary dressing tool are maintained in contact as the wheel traverses the surface of the mill roll.
Abstract: An abrasive article comprising an elongated body, a bonding layer overlying a surface of the elongated body, and abrasive grains contained within the bonding layer at an average abrasive grain concentration within a range between about 0.02 ct/m and about 0.30 ct/m.
Abstract: An abrasive tool, suitable for cutting, slotting, grinding and polishing hard materials, such as ceramics, metals, and composites thereof, and methods for making same. The tool includes a plurality of pores positioned in an abrasive region adjacent an outer circumference of the disk. The pores have any predetermined shape, size and position relative to one another.
Type:
Grant
Filed:
August 11, 2005
Date of Patent:
February 8, 2011
Assignee:
Saint-Gobain Abrasives, Inc.
Inventors:
Sergej-Tomislav Buljan, Srinivasan Ramanath, Donald Brodeur, Robert F. Corcoran
Abstract: An abrasive tool having a body including an abrasive portion having abrasive grains contained within a matrix material and porosity characterized by a bimodal distribution of pores including large pores having an average large pore size (Pl) and small pores having an average small pore size (Ps), wherein Pl>Ps. The body of the abrasive tool further includes a first reinforcing member contained within the abrasive portion, and a percent thermal expansion over a temperature range for 25° C. to 450° C. of not greater than about 0.7%.
Abstract: A rapid structuring media cartridge includes a cartridge body, a first binder and first abrasive particles. The cartridge is operable to deposit successive patterned layers including the first binder and first abrasive particles to form an abrasive structure.
Abstract: A method of facilitating abrasive article manufacturing includes providing a rapid tooling system to a consumer and providing a cartridge to the consumer. The cartridge has a cartridge body, a first binder and first abrasive particles. The cartridge is configured to operate as part of the rapid tooling system and is operable to deposit the first binder and the first abrasive particles in successive patterned layers to form an abrasive structure.
Abstract: An abrasive tool for conditioning CMP pads includes abrasive grains coupled to a substrate through a metal bond and a coating, e.g., a fluorine-doped nanocomposite coating. The abrasive grains can be arranged in a self-avoiding random distribution. In one implementation, an abrasive tool includes a coated plate and a coated abrasive article that has two abrading surfaces. Other implementations related to a process for producing an abrasive tool that includes a coating at one or more of its surfaces. Also described are methods for dressing a CMP pad.
Abstract: The invention relates to a liquid resin composition intended for manufacturing abrasives that comprises at least one novolac resin having a glass transition temperature less than or equal to 60° C., at least one reactive diluent and optionally at least one crosslinking agent. Application of the resin composition for producing abrasive articles, especially bonded abrasives and coated abrasives. It also relates to the abrasive articles comprising abrasive grains connected by such a liquid resin composition.
Type:
Application
Filed:
October 1, 2008
Publication date:
November 25, 2010
Applicants:
SAINT-GOBAIN ABRASIVES, INC., SAINT-GOBAIN ABRSIFS TECH. ET SERVICES, S.A.S.
Inventors:
Alix Arnaud, Philippe Espiard, Sandrine Pozzolo
Abstract: The invention relates to a thermally curable liquid resin composition intended for manufacturing abrasives that comprises at least one epoxy resin comprising at least two epoxy groups and at least one reactive diluent, said composition having a viscosity, at 25° C., less than or equal to 7000 mPa.s. Application of the resin composition for producing abrasive articles, especially bonded abrasives and coated abrasives. It also relates to the abrasive articles comprising abrasive grains connected by such a liquid resin composition.
Type:
Application
Filed:
October 1, 2008
Publication date:
October 28, 2010
Applicants:
SAINT-GOBAIN ABRASIVES, INC., SAINT-GOBAIN ABRASIFS TECH. ET SERVICES, S.A.S.
Inventors:
Alix Arnaud, Philippe Espiard, Sandrine Pozzolo
Abstract: A polyurethane adhesive composition, formed by combining a non-blocked urethane prepolymer and a polymeric polyol, is used for preparing a coated abrasive tool. The polyurethane adhesive composition is applied over a substrate to thereby form a polyurethane-adhesive-composition-coated substrate. Curing the polyurethane-adhesive-composition-coated substrate forms a polyurethane-adhesive-coated substrate. An abrasive material is applied over the substrate at a time selected from the group consisting of prior to, after, and simultaneously with, the application of the polyurethane adhesive composition to the substrate, to thereby form the coated abrasive tool. The coated abrasive tool preferably includes a polyurethane adhesive resin coating over the substrate, the resin coating being formed from a polymerization reaction of a non-blocked urethane prepolymer and a phenoxy resin.
Type:
Grant
Filed:
March 8, 2006
Date of Patent:
October 12, 2010
Assignees:
Saint-Gobain Abrasives, Inc., Saint-Gobain Abrasifs Technologie et Services, S.A.S.
Abstract: A coated abrasive article includes a backing and fused alumina-zirconia abrasive grains attached to the backing with a binder. The fused alumina-zirconia abrasive grains include between about 35 wt % and about 45.5 wt % ZrO2+HfO2, between about 43.7 wt % and about 65 wt % Al2O3, less than about 0.8 wt % SiO2 and less than about 10 wt % other oxides. The fused alumina-zirconia abrasive grains simultaneously satisfy both a granulometric and densimetric condition.
Abstract: Dust collection for an abrasive tool is disclosed. In one embodiment, a first dust extraction component extracts dust from an upper part of material that is machined, while a second dust extraction component extracts dust from a lower part of the material by the abrasive tool. The first dust extraction component and the second dust extraction component collect about 100% of dust generated from the material.
Abstract: An abrasive tool including a CMP pad conditioner having a substrate including a first major surface, a second major surface opposite the first major surface, and a side surface extending between the first major surface and the second major, wherein a first layer of abrasive grains is attached to the first major surface and a second layer of abrasive grains is attached to the second major surface. The conditioner further includes a first sealing member extending in a peripheral direction along a portion of the side surface of the substrate.