Abstract: CMP formulations for use on nickel/phosphorus alloys comprising abrasive particles and an oxidant, a modifier for the action of the oxidant and first and second accelerants to sequester removed materials containing phosphonate and ammonium or amine groups respectively and optionally an organic carboxylic acid.
Type:
Application
Filed:
August 5, 2005
Publication date:
December 22, 2005
Applicant:
SAINT-GOBAIN CERAMICS & PLASTICS, INC.
Inventors:
Douglas Edwin Ward, David Peter Solomos
Abstract: Aspects of the present invention may be found in an electrostatic dissipative ceramic component having a stabilized zirconia base, a surface resistivity between 1×105 and 1×1012 ohms per square and at least 2 percent by volume scattering material. The stabilized zirconia may be present in amounts between 60 and 95 weight percent. Further aspects of the invention may be found in an electrostatic dissipative ceramic material having stabilized zirconia, a resistivity modifier, and a scattering material. The stabilized zirconia may be present in amounts between 60 and 95 weight percent of the ceramic material. The resistivity modifier may be present in amounts between 5 and 30 weight percent. The scattering material may comprise at least 2 volume percent of the electrostatic dissipative ceramic material. The component may be used in the manufacturing of electronic component such as hard drives.
Abstract: A structural component is provided that includes a substrate and a ceramic layer deposited thereon. The ceramic layer is formed of a ceramic electrostatic discharge dissipative material and has an electrical resistivity within a range of about 103 to about 1011 ohm-cm.
Abstract: An electrostatic chuck for supporting a semiconductor wafer, including: a chuck body having a dielectric region and an insulating region, the insulating region having a higher electrical resistivity than the dielectric region, an electrode embedded in the chuck body, and a barrier layer provided between dielectric region and the insulating region.
Type:
Application
Filed:
April 8, 2005
Publication date:
October 20, 2005
Applicant:
SAINT-GOBAIN CERAMICS & PLASTIC, INC.
Inventors:
Morteza Zandi, Ara Vartabedian, Brian LaCourse
Abstract: A ceramic component is disclosed, including a sintered ceramic body from a composition comprising a first ceramic material, and a plurality of inclusions in the ceramic body, each inclusion comprising graphite and a second ceramic material.
Abstract: The present invention relates to a powder comprising boron nitride particles having an aspect ratio of from about 50 to about 300. The present invention also relates to a method of making delaminated boron nitride powder. This method involves providing boron nitride powder and milling the boron nitride powder in a mixture including a milling media and a milling liquid under conditions effective to produce delaminated boron nitride powder.
Abstract: The invention provides an improved ceramic packing element (1, 6, 8) suited to use as a bed limiter having a generally uniform cross-section in the length (l) direction with the basic shape of a bow-tie and having a plurality of through passages (5) parallel to the length dimension (L).
Type:
Application
Filed:
June 9, 2003
Publication date:
September 29, 2005
Applicant:
Saint-Gobain Ceramics & Plastics, Inc.
Inventors:
Hassan Niknafs, Richard Robinette, Stephen Dahar, Thomas Szymanski, John Reid
Abstract: Aspects of the present invention may be found in an electrostatic dissipative ceramic component having a stabilized zirconia base, a surface resistivity between 1×105 and 1×1012 ohms per square and at least 2 percent by volume scattering material. The stabilized zirconia may be present in amounts between 60 and 95 weight percent. Further aspects of the invention may be found in an electrostatic dissipative ceramic material having stabilized zirconia, a resistivity modifier, and a scattering material. The stabilized zirconia may be present in amounts between 60 and 95 weight percent of the ceramic material. The resistivity modifier may be present in amounts between 5 and 30 weight percent. The scattering material may comprise at least 2 volume percent of the electrostatic dissipative ceramic material. The component may be used in the manufacturing of electronic component such as hard drives.
Abstract: CMP formulations for use on nickel/phosphorus alloys comprising abrasive particles and an oxidant, a modifier for the action of the oxidant and first and second accelerants to sequester removed materials containing phosphonate and ammonium or amine groups respectively and optionally an organic carboxylic acid.
Abstract: Robust ceramic igniters are provided that include an improved sealing system which can significantly enhance operational life of the igniter. Preferred igniters comprise a conductive cold zone and hot zone with higher resisitivity. A hermetic sealant material covers one or more electrical connections on the of each cold zone, thus shielding the electrical connections from environmental exposure, and thereby avoiding igniter failure resulting from electrical shorts and/or undesired oxidation.
Abstract: Porous ceramic particles can be fragmented by generating a gas inside the pores at a sufficient pressure to cause the particles to be fragmented. The preferred way of generating the pressure is by immersing the particles in a liquid that at ambient temperatures and pressures is a gas until the liquid is absorbed into the pores and thereafter rapidly changing the conditions such that the liquid becomes a gas resulting in explosive fragmentation of the ceramic particles.
Abstract: A ceramic component is disclosed, including a sintered ceramic body from a composition comprising a first ceramic material, and a plurality of ons in the ceramic body, each inclusion comprising graphite and a second material.
Abstract: A high purity ceramic article having a typical pore size of at least about 15 ?m and an active impurity concentration of less than about 400 ppm can be prepared by molding ceramic powder, sintering to vaporize any active impurity components, washing to dissolve any remaining active impurity components with an acid solution, and oxidizing to remove any residual active impurity components.
Abstract: A radiation detector, in particular a gamma camera, is constructed and operated in such a fashion that only a predetermined number of light sensors (such as PMT's) adjoining each other in a cluster are used to generate a signal with amplitude and event position information. The camera may also use an array of individual scintillation elements (crystals) in place of a single crystal, with certain advantages obtained thereby. According to another aspect of the invention, there is a reflector sheet that defines an array of apertures through which scintillation light can pass from the scintillation crystal to a plurality of light sensors optically coupled to an optical window in an array corresponding to the array of apertures in the reflector.
Type:
Grant
Filed:
April 3, 2002
Date of Patent:
June 21, 2005
Assignee:
Saint Gobain Ceramics and Plastics, Inc.
Inventors:
Robert S. Schreiner, John A. White, Michael R. Mayhugh, George Mataraza, Csaba M. Rozsa, Daniel J. Herr
Abstract: Thermal spray powders suitable for application of a thermal barrier coating on a substrate can be obtained by plasma spraying a chemically homogeneous zirconia stabilized in the tetragonal form using a stabilizing oxide such as yttria to obtain a powder comprising substantially spherical hollow zirconia particles with sizes less than about 200 micrometers.
Abstract: A method of depositing a coating is disclosed, which method calls for providing a substrate, and thermally spraying a ceramic powder thereon to form a coating. The ceramic powder has a garnet crystal structure phase, and the thermal spraying in turn forms a coating on the substrate that includes a garnet crystal structure phase.
Type:
Grant
Filed:
January 11, 2002
Date of Patent:
April 26, 2005
Assignee:
Saint-Gobain Ceramics & Plastics, Inc.
Inventors:
Matthew A. Simpson, Dominique Billieres, Gérard Main, Jean-Michel Drouin
Abstract: A method of forming a component is disclosed. The method includes: providing a core containing a porous material; infiltrating the core with silicon carbide; and removing the porous material of the core, thereby forming a porous substrate containing silicon carbide.
Abstract: A spinel composition of the invention includes a monocrystalline lattice having a formula Mg1-w?wAlx-y?yOz, where w is greater than 0 and less than 1, x is greater than 2 and less than about 8, y is less than x, z is equal to or greater than about 4 and equal to or less than about 13, ? is a divalent cationic element having an ionic radius greater than divalent magnesium, and ? is a trivalent cationic element having an ionic radius greater than trivalent aluminum. The monocrystalline lattice has tetrahedral and octahedral positions, and most of the magnesium and ? occupy tetrahedral positions. In one embodiment, the molar ratio of aluminum to the amount of magnesium, ? and ? can be controlled during growth of the monocrystalline lattice thereby forming a spinel substrate suitable for heteroepitaxial growth of III-V materials. A method of the invention, includes forming a monocrystalline lattice of a spinel composition.
Abstract: A saturable absorber Q-switch includes a monocrystalline lattice having the formula Mg1-xCoxAlyOz where x is greater than 0 and less than 1, y is greater than 2 and less than about 8, and z is between about 4 and 13. The lattice has tetrahedral and octahedral positions, and most of the magnesium and cobalt occupy tetrahedral positions. In one embodiment, the molar ratio of aluminum to the combined amount of magnesium and cobalt in the monocrystalline lattice can be controlled during growth of the monocrystalline lattice to thereby form a saturable absorber Q-switch that exhibits a 4T1 spectrum for the cobalt ion of at least about 1544 ?m.
Type:
Grant
Filed:
May 22, 2001
Date of Patent:
January 4, 2005
Assignee:
Saint-Gobain Ceramics & Plastics, Inc.
Inventors:
Milan R. Kokta, Dennis L. Peressini, Jeffrey A. Cooke, Kevin L. Goodnight
Abstract: A boehmite particulate material is disclosed. The material is formed by a process that includes providing a boehmite precursor and boehmite seeds in a suspension, and heat treating the suspension to convert the boehmite precursor into boehmite particulate material. The boehmite particulate material has an aspect ratio of not less than 3:1.
Type:
Application
Filed:
May 14, 2004
Publication date:
December 30, 2004
Applicant:
SAINT-GOBAIN CERAMICS & PLASTICS, INC.
Inventors:
Ralph Bauer, Margaret Skowron, Martin Barnes, Doruk Yener